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Abstract

In mobility markets — especially vehicle for hire markets — drivers offer individual transportation by car to customers.
Drivers individually decide where to go to pick up customers to increase their own utilization (probability of carrying
a customer) and utility (profit). The utility drivers retrieve from customers comprises both costs of driving to another
location and the revenue from carrying a customer and is thus not shared between different drivers. In this thesis, I
present the Vehicle for Hire Problem (VFHP) as a generalization of the Kolkata Paise Restaurant Problem (KPRP) to
evaluate different strategies for drivers in vehicle for hire markets. The KPRP is a multi-round game model presented
by Chakrabarti et al. (2009) in which daily laborers constitute agents and restaurants constitute resources. All agents
decide simultaneously, but independently where to eat. Every restaurant can cater only one agent and agents cannot
divert to other resources if their first choice is overcrowded. The number of agents equals the number of resources.
Also, there is a ranking of restaurants all agents agree upon, and no two resources yield the same utility. The VFHP
relaxes assumptions on capacity and utility: Resources (customers) are grouped in districts, agents (drivers) can redirect
to other resources in the same district. As the distance between agent and resource reduces the agent’s utility and
the location is not identical for all agents, the utility of a given resource is not identical for all agents. To study the
impact of the different assumptions, I build four different model variants: Individual Preferences (IP) replaces the
shared utility of the KPRP with uniformly distributed utilities per agent. The Mixed Preferences (MP) model variant
uses the utility assumption of the VFHP, but the capacity of all districts remains 1. The Individual Preferences with
Multiple Customers per District (IPMC) model variant groups customers in districts, and uses the uniform utilities
introduced in the IP model variant. Mixed Preferences and Multiple Customers per District (MPMC) implements
all assumptions of the VHFP. In this thesis, I study different strategies for the KPRP and all variants of the VFHP
to build a foundation for an incentive scheme for dynamic matching in mobility markets. The strategies comprise
history-dependent and utility-dependent strategies. In history-dependent strategies, agents incorporate their previous
decisions and the utilization of resources in previous iterations in their decision. Agents adapting utility-dependent
strategies choose the resource offering the highest utility with a given probability.

Keywords: vehicle for hire markets; distributed decision making; agent-based modelling; congestion game; limited
rationality

1. Introduction in most cities where data is available (Linne+Krause
Marketing-Forschung, 2011; Cramer and Krueger, 2016;
Linne+Krause Marketing-Forschung, 2016). Though ex-
cess capacity can partially explain these numbers, utiliza-
tion could be increased, if drivers would be distributed
across the city more efficiently. In contrast to underutiliza-
tion, passengers have to wait for more than 20 minutes in
approximately every third case in other cities (Rayle et al.,

Mobility markets, or in particular vehicle for hire mar-
kets, comprise all modes of shared, but individual trans-
portation with a driver, in particular with a short-term
focus (e.g., taxis, Lyft, and Uber). In mobility markets,
drivers individually decide where to look for customers.
However, the average idle time of taxis is about 25-50%
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2014), suggesting that the drivers are not at the locations
where they are needed.

To address these inefficiencies in vehicle for hire mar-
kets, coordinators could instruct drivers where to wait
for customers. In current business models, however, this
is not possible, since drivers are not employees of the
coordinators. Hence, they try to maximize their individ-
ual profits by deciding independently where to look for
customers without considering the social welfare or uti-
lization of other agents. In practice, there are approaches
like ‘surge pricing’ (price adapts dynamically to changes
is demand and supply with the goal to influence demand
and supply, e.g. increase supply by increased price) to
respond to expected peaks in demand, though literature
on the efficiency of different driver strategies is limited
(Chen and Sheldon, 2015; Hall et al., 2015; Rogers, 2015).
One, therefore, has to turn the attention to the coordina-
tion amongst drivers: Drivers maximize their individual
utility, but their utility inversely depends on the number
of agents selecting the same option. Thus, drivers benefit
if there are less other drivers in the same district than
available customers, thus, deciding against the crowd
is beneficial. Alternatively, one could construct a game
model derived from the College Admission Problem or Stable
Marriages Problem (Gale and Shapley, 1962; Manlove and
Sng, 2006; Abraham et al., 2007; Akbarpour et al., 2016).
In these problems, agents try different matches until an
optimal match is found. Yet, in vehicle for hire markets,
I assume that redirecting to another resource, if the pre-
ferred resource is not available, is not an option, because
of the costs and time constraints of redirecting (requires
the agents to drive to another location consuming time
and fuel).

To analyze the fundamental underlying problem, I
propose a repeated non-cooperative game model to in-
vestigate different strategies in the coordination prob-
lem among drivers. It is a generalization of the Kolkata
Paise Restaurant Problem (KPRP) (Chakrabarti et al., 2009)
where agents repeatedly compete for a set of resources.
As a foundation to be able to assess coordinators’ incen-
tives like ‘surge pricing’, one first needs to understand
the fundamental impact of different driver strategies. I
contribute to this research field by game model, relaxing
assumptions of the KPRP. In contrast to existing research,
I address both individual agent preferences and different
resource capacities. Besides the game model, the contribu-
tions of this research are different mixed strategies for the
model and an analysis of their impact on car utilization
and driver utilities in different settings. These insights
constitute building blocks for a characterization of favor-
able agent behavior to design incentive mechanisms to
distribute drivers efficiently.

1.1. The Vehicle for Hire Problem and its Model Variants
In this thesis, I cover five different, but related model
variants: The Kolkata Paise Restaurant Problem and four

relaxations suited for mobility markets comprising the
Vehicle for Hire Problem (VFHP).

In Kolkata, there were very cheap and
fixed-rate ‘Paise Restaurants’, popular among
the daily laborers in the city. During lunch
hours, the laborers used to walk down (to
save the transport costs) to any of these restau-
rants and would miss the lunch if they arrived
at a restaurant where their number is more
than the capacity of the restaurant for such
cheap lunch. Walking down to the next restau-
rant would mean failing to report back to the
job in time! Paise means the smallest Indian
coin and there were indeed some well known
rankings of these restaurants as some of them
would offer more tastier items compared to
the others. (Chakrabarti et al., 2009, p. 2421)

The KPRP was first presented by Chakrabarti et al.
(2009). In this model, N agents (that is daily laborers)
aim at having lunch at one of the N restaurants. All
agents gain the same utility from some restaurant, and all
restaurants have mutually different utilities. Every agent
aims at getting lunch at his preferred restaurant, but every
restaurant can only cater a single agent. Thus, if more
than 1 agent goes to some restaurant, some agents will
not get lunch, as they cannot divert to another restaurant
that same day. The KPRP is a repeated game with an
infinite number of iterations.

In mobility markets, drivers i € I constitute agents
and customers j € | (located in districts k € K) consti-
tute resources. Agents drive to resources. Agents carry
resources (up to the capacity limit). For this thesis I re-
lax two main assumptions: Agents no longer retrieve
identical utility from a given resource, but one agent can
prefer resource j and another agent can prefer resource
j' # j (with the highest utility determining preference).
I present two different models: In the Individual Pref-
erences model (IP), utilities are uniformly assigned to
resources (customers). Thus, agent preferences are inde-
pendent of each other. In the Mixed Preferences model
(MP), utilities are calculated as a weighted average of
an individual component (that is distance between agent
and customer) and a shared component (that is the pay-
off). I further model increased capacity: Clustering cus-
tomers j € | in districts k € K allows agents to divert
to other customers inside the district they drove to. The
average number of customers per district is ¢, and the
customers randomly “choose” the district they belong to,
the number of customers per district is thus Gaussian
distributed around ¢. The Individual Preferences with



L. Martin / Junior Management Science 4(1) (2019) 1-34 3

Multiple Trips per Customer model (IPMC) combines the
IP model with the clustering concept: Agents gain ran-
dom utilities from customers and customers belong to
districts. In the Mixed Preferences with Multiple Trips
per Customer model (MPMC), the utility is obtained as a
weighted average of an individual component to model
the distance and a shared component to model the payoff.
The distance (and thus the individual component) is equal
for all customers belonging to one district.

1.2. Outline of this Thesis

The remainder of this thesis is organized as follows: 1
first discuss related work in chapter 2, I then present the
strategies (chapter 3). The successive chapters present the
individual model variants and assess the performance of
aforementioned strategies. Chapter 4 focuses on the KPRP,
chapter 5 presents the IP model variant, chapter 6 gives
insight in the MP model variant, chapter 7 concerns the
IPMC model variant, and chapter 8 evaluates the MPMC
model variant. To improve the reader’s understanding,
chapters 4-8 can be read independently from each other,
as key concepts are presented in each of them. Chapter
9 discusses the results from chapters 4-8, and chapter 10
concludes this thesis.

2. Related Work

To my knowledge, no paper extends the KPRP for
mobility markets. Relevant research is conducted in three
fields: First, I give an overview of relevant game models in
other application areas, in particular coordination games.
Second, there is literature in optimization and operations
research in the field of vehicle for hire markets. Third, I
introduce basic literature of dynamic mechanism design.

2.1. Congestion Games

The presented model is a type of congestion game, a
model for games in which agents should choose different
alternatives to succeed first described by Rosenthal (1973).
Mathematically, congestion games can be identified by
their potential function and thus their pure-strategy Nash-
equilibria; Congestion games are therefore also Potential
games (Monderer and Shapley, 1996; Nash, 1951). Yet,
such a Nash equilibrium is usually inefficient, as Cor-
rea et al. (2005) prove. Other congestion game models
are the El Farol Bar Problem (Arthur, 1994), the KPRP
(Chakrabarti et al., 2009), the Crowding Game (Milchtaich,
1996), and the minority game (Challet and Zhang, 1998).

The El Farol Bar Problem is a game model with N
agents (scientists) and one resource (the bar in Santa Fe
during Karaoke night). All agents aim at maximizing
their profit. If more than 0.6 - N agents go to the bar,
it becomes overcrowded, and the agents would enjoy
themselves more at home. If fewer agents go to the bar,

they enjoy themselves more than if they stayed at home.
Agents, therefore, coordinate themselves such that as
many agents as possible (but less than 0.6 - N) go to the
bar (Arthur, 1994).

The KPRP is the foundation game model for this the-
sis; the model is described in chapter 4 in more detail.
Chakrabarti et al. (2009) and Ghosh et al. (2013) introduce
strategies for increasing the utilization of the KPRP. Yang
et al. (2016) study a generalization of the KPRP which
is also aimed at dynamic markets: As a relaxation of
the KPRP they study whether an agent should divert to
another district or stay in the current one with different
capacities for different districts. Agents are being replaced
by others (which do not have the same prior knowledge)
following a Poisson distribution. They prove the existence
of a Mean Field Equilibrium (Lasry and Lions, 2007) for the
Threshold Strategy (if a capacity threshold is exceeded at
time ¢, agents stochastically divert to other districts) (Yang
et al., 2016). This thesis on the opposite compares differ-
ent strategies. Agarwal et al. (2016) generalize the KPRP
to a Majority Game, in which they study convergence be-
havior given only few prior knowledge. In difference to
the KPRP, capacity is not restricted, and in difference to
the problem in mobility markets agents have no internal
utility ranking, they aim at choosing with the herd.

The Crowding Game is a game model in which the
utility of agents only depends on the number of agents
also selecting the same option. If more agents select one
option, the utility decreases (Milchtaich, 1996). The VFHP
game model is similar to the Crowding Game as the num-
ber of agents decreases the utility (as the expected utility
is divided among all agents selecting some resource), but
this model also uses a basic utility which is not shared
among agents.

The Minority Game is a game with N agents and
two resources, and the utility for those agents choosing
the resource with the lower occupancy is higher than the
utility for those agents in the crowded resource (i.e. roads)
(Challet and Zhang, 1998). In a recent study, “treatments”
(which differ in the information given to participants)
for the Minority Game were studied with experiments.
The authors state that changing from one option to the
other is not recommended regardless of prior knowledge
(Chmura and Pitz, 2006). Because the Minority Game only
allows two different payoffs from two different resources,
I cannot directly transfer this insight to the Kolkata Paise
Restaurant Problem in mobility markets.

2.2. Vehicle for Hire Market

There is only limited research work available on op-
timal distribution of drivers in vehicle for hire markets.
Several studies focus on assigning drivers an optimal dis-
trict where they await passengers (Lee et al., 2004; Seow
et al., 2010); though, in most business models, drivers
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decide independently. Yang et al. (2005) study a model
with varying demand and supply. Taxi drivers individu-
ally decide when to enter the market and when to leave
it, resulting in a market equilibrium. This work does
not study utility, but only utilization. Kim et al. (2011)
propose an agent-based model incorporating real-world
passenger travel pattern to predict the highest possible
utility. Their model also incorporates districts (“areas”)
and varying utility functions over time, but tests for dif-
ferent criteria: Whilst I analytically derive utilization and
utility for different strategies in a large environment, Kim
et al. (2011) studies a setting with five nodes and retrieves
utilization and passenger wait time for varying fleet sizes.
Wong’s primary criterion is reduced vacant mileage for
taxis (Wong et al., 2015). He uses a two-step approach in
which taxis can only divert to adjacent zones rather than
all others. Trigo et al. (2006) uses Multi-Agent Markov
Decision Processes to model drivers transporting passen-
gers. This paper uses a cover story which is highly similar
to ours, but rather than using stochastic strategies, Trigo
et al. (2006) use a two-layered learning process. This the-
sis aims at improving the taxi allocation with respect to
utilization fraction or utility assuming choice at discrete
time steps. Li (2006) on the opposite studies strategies
to minimize passenger waiting time or travel time, taxi
idle time or non-live mileage with drivers deciding asyn-
chronously. This thesis studies a large variety of strategies,
Li (2006) restricts himself to three simple strategies. The
paper concludes that returning to hotspots after serving a
trip can increase all studied parameters. Similar results
can also be seen in this thesis, as the utilization fraction
increases after introducing multiple trips per district.

Li et al. (2011) present a model which predicts whether
agents should wait for passengers stationary or continue
driving to “hunt down” customers. They use data mining
techniques with data on time, location, and strategy (hunt
or wait). In the VFHD, all agents decide where to drive to
(yet, the location might not change). Thus, the strategy
of the VFHP dictates where to go rather than if to go to
another location. The model by Li et al. (2011) cannot
predict where taxi drivers should drive. Ge et al. (2010)
build a recommender system to reduce the travel distance
before carrying the next customer. This behavior is re-
flected by the VFHP game model, as the individual utility
models distance. Yuan et al. (2011) extend the work by
Ge et al. (2010) by also recommending optimal passenger
behavior.

Alonso-Mora et al. (2017) postulate that it should be
possible to replace 13,000 cabs in New York City by only
3,000 on-demand vehicles for ride-sharing, which would
both reduce wait time and traffic congestion. Their cal-
culations suggest that a better utilization fraction of cabs
can be achieved, though ride-sharing is not considered
in this thesis. Furthermore, using graph traversals for

optimal distribution and routing of taxis is a solution a
single driver cannot adopt, but only dispatchers.

Shi and Lian (2016) study the taxi transportation mar-
ket from the opposite side as this thesis paper does: Pas-
sengers can decide whether or not they are queueing for
a taxi (depending on the “queue length” (number of pas-
sengers) and the “buffer size” (number of cabs) at the
taxi stand). The authors compare strategies of selfish
and social passengers and options for the government to
interfere.

Furthermore, there are several papers in the field of
operations research which focus on the influence of regu-
lation (taxi medallions, fixed rates) on the market (Cairns
and Liston-Heyes, 1996; Arnott, 1996). In the VFHP game
model, I assume that there are sufficient agents to carry
every customer and sufficient customers such that every
agent can carry a customer.

2.3. Dynamic Mechanism Design

There is early stage work on dynamic mechanism
design in matching markets: If there is a dispatcher, he
can make agents wait for a better suited trip. Kurino
(2009) gives a dynamic version of the House Allocation
Problem. Bloch and Houy (2012) periodically redistribute
items between agents.

If agents are allowed to choose independently from
a dispatcher, waiting time might influence their choice,
reducing welfare. In this component — choosing the best
individual option reduces social optimality — the prob-
lem described by Leshno (2012) is highly similar to the
KPRP. Yet, unlike environments described in the paper
(e.g., nursing homes, subsidized housing), there are no
“overloaded waiting lists” (demand tremendously exceeds
supply) in the taxi industry, as passengers usually have
other means of transportation to choose from.

Social Welfare (benefit for the entire group) in trans-
portation markets has been studied at the example of
Rotterdam Port: Transportation tasks inside the port are
assigned to trucks which are waiting for departure. The
authors claim that a higher number of participants in gen-
eral increases social welfare (as it is easier to adapt to peak
load times), but agents might not continue participating if
they assumed that the game put them at a disadvantage
in comparison to other players. They, therefore, postulate
an algorithm which ensures that agents are equally uti-
lized (Ye and Zhang, 2016; Ye et al., 2017). In the KPRP
on the opposite, I assume that the number of customers
always equals the number of agents (agents will always
participate), but agents are not assigned their trip.

Chen and Hu (2016) conduct research on market de-
sign in a market place with buyers and sellers such as
Uber: In such markets, buyers wait for lower market
prices while sellers wait for higher market prices. They
conclude that fast changes in the market price (set by
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an intermediary) and price surges are not recommended,
as participants might leave the market temporarily. This
thesis on the opposite assumes myopic agents, who only
plan ahead few time steps.

3. Strategies

In this thesis I consider seven strategies: No Learn-
ing (NL), Rank Dependent Choice (RD), Limited Learn-
ing (LL), One Period Repetition (OPR), Crowd Avoiding
(CA), Stochastic Crowd Avoiding (SCA), and Stochastic
Rank Dependent Choice (SRD). NL and RD are baseline
strategies which represent basic behavior. RD, LL, OPR,
and SRD incorporate the resource’s utility in the agents’
choices and are therefore utility-based. LL, OPR, CA, and
SCA require knowledge about previous iterations and are
therefore history-based.

The NL strategy dictates agents to randomly choose
a resource in every iteration, regardless of history (hence
the term “No Learning”) or resource utility. Resources
are either customers or districts (or restaurants in the
KPRP). The strategy was first presented by Chakrabarti
et al. (2009) in which restaurants comprise resources.

The second baseline strategy is the strategy RD.
Agents always drive to the resource yielding them max-
imum utility. Agents thus receive maximum utility, if
they carry a customer. If there are several resources
yielding equal utility, agents decide randomly between all
maximum utility resources. I introduce this strategy, as it
mimics simple behavior if limited information is available:
If agents do not know about the preferences or behavior
of other agents, but assume that only a few agents share
the same preference, the most simple approach is to
always head for the preferred resource. It requires only
very few computational power: Prior to the first iteration,
agents calculate their preferred customer by comparing
the utility of all resources. After driving there, they will
remain in their position, requiring no recomputation at all.
It also requires no information except the own utilities or
preferences, making it suitable for large problem spaces.

Agents incorporating the LL strategy follow a two-
step approach: (1) If an agent carried a customer at time
t, he will drive to the highest utility resource at time t 4- 1.
(2) If an agent did not carry a customer at time ¢, he will
randomly choose any other resource at time ¢t + 1. (If an
agent was successful at the highest utility resource, he will
return there in the next iteration). The LL strategy was
presented by Chakrabarti et al. (2009) (named Limited
Learning 1).

The OPR strategy requires agents to follow a three-
step approach: (1) If an agent carried customer j at time ¢
(but not at time t — 1), he will return to this resource at
time t + 1 (return). (2) If an agent served the same resource
j at time t — 1 and t, he will compete for the highest utility

customer at time t + 1 (improve). (3) If an agent did not
carry any customer at time ¢, he will randomly choose any
resource which was vacant at time f in the next iteration
(random). OPR was also introduced in Chakrabarti et al.
(2009).

With the CA strategy agents only drive to resources
which were vacant or had remaining capacity at time ¢ — 1.
This strategy originates in a paper by Ghosh et al. (2013).

Agents using the SCA strategy stochastically decide
whether to return to the same resource or to randomly
turn to another resource. If a resource j does not exceed
its capacity at time ¢, all agents driving to this resource
j at time ¢ will return there at time ¢ + 1. If the capacity
is exceeded, all agents stochastically either return to j or
drive to any other (randomly chosen) resource at time t 4
1 such that the expected number of agents in j equals its
capacity (let the capacity be ¢; and the number of agents
at the resource be o;: return with probability %, randomly

c

choose another resource with probability 1 — —j) The SCA

0
strategy stems from Ghosh et al. (2013).

The SRD strategies build upon the RD strategy, in-
cluding some properties of the SCA strategy: Let the ca-
pacity of a resource j be ¢;, and let the number of agents
preferring resource j be p; (agents who cannot retrieve
higher utility from any other resource). Agents drive to
their preferred resource if its capacity is not exceeded,
that is ¢; > p;. Otherwise, they stochastically drive to j

with probability ;—]] and redirect to another resource with

probability 1 — ;—]] Thus, the expected number of agents

preferring a resource j driving to that resource j is ¢, if
at least ¢; agent prefer j, and p; otherwise. The resource
agents divert to can be one of the following: (SRD1) Any
customer which is noone’s first choice; (SRD2) any other
customer; (SRD3) his second choice customer; or (SRD4)
the best customer which is noone’s first choice. SRD3 and
SRD4 are an extension of SRD2 and SRD1 respectively,
increasing the average utility of successful agents, that
is agents carrying a customer. If the first preferences of
different agents are not independent, this likely also apply
for the alternate preferences in SRD3 and SRD4, decreas-
ing the utilization fraction. All SRD strategies require
information about the first preferences of all other agents
which can be acquired by a single iteration of RD upfront.
Then all agents know how many other agents share the
same top preference, making the second iteration identi-
cal (SRD2) or similar (SRD1, SRD3, SRD4) to SCA, as all
agents redirect based upon the number of agents in the
chosen district during the previous iteration. In addition
to the number of agents preferring the same resource,
the SRD1 strategy also requires information about the
number of agents preferring all other resources which
one could also retrieve in a single iteration of RD upfront.
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Thus, the SRD1 strategy does not require too much in-
formation, if the number of iterations is sufficiently high
to compensate for a potentially very low utility during
the first iteration. The SRD2 strategy requires less infor-
mation than the SRD1 strategy, as it only incorporates
the number of agents preferring the resource they prefer
themselves. It is thus beneficial if the information about
other resources cannot be determined easily. The SRD3
strategy also requires only very few information (as much
as SRD2), but the utility of successful agents is higher, as
all successful agents receive a high utility (maximum or
second highest utility). If the agent utilities of different
agents are not stochastically independent, there can be
a high number of resources noone drives to, neither as
first nor as second preference. In many cases, the second
preference of an agent is the first preference of another
agent, thus not exploiting the full potential. In SRD4, the
second preference is only chosen, if no agent prefers this
resource. Thus, the set of first choice resources and the
set of alternate choice resources do not intersect, making
it impossible that alternate choice agents carry a customer
who is preferred by another agent increasing the average
utility. Yet, SRD4 requires more information about the
preferences of other agents than SRD3. Thus, the exis-
tence of all strategies is justified by their different data
requirements comparing to the expected performance.
The performance of the different strategies with respect
to the metrics utilization fraction and utility depends on
the actual model variant.

4. Kolkata Paise Restaurant Problem

In their paper, Chakrabarti et al. (2009) discussed dif-
ferent strategies and provided simulations.

In the following, I will briefly reproduce their results
analytically.

4.1. The Model

In the KPRP cover story, daily laborersi € I, |I| = N
represent agents who select a restaurant j € ], |J| = N for
lunch. Agents select (i.e. randomly) a restaurant to which
they drive. Formally, I use d (i, j) to represent that i goes
toj.

.. 1 if agent i goes to restaurant j
d(i ) = .
0 otherwise
(Definition 4.1)
Vjioj =Y d(ij) (Definition 4.2)
icl
Obviously, one agent can only go to one restaurant
(Vi : Y, d(i,j) = 1). Every restaurant j € | can cater
j€]

exactly one agent i € I.

.. 1 if agent i eats at restaurant j
c(i,j) = {

0 otherwise
(Definition 4.3)

If no agent went to j, j does not cater any agent, if
more than one agent goes to restaurant j, only one will be

served (Vj : ¢ (i,j) = min (Z d(i,j), 1)). Agents can only
i€l

eat at restaurants they went to (Vi,j : ¢ (i,j) < d (i,])). The
utility u (i,j) agents receive from eating at a restaurant
is a random permutation and is identical for all agents
(resulting in a shared utility us (f)), thatis Vj : u (i,j) =
us (j) and Vj,j" : us (j) # us (') Vj = j'). A daily laborer
(agent) prefers a restaurant if no other restaurant yields
higher utility for him. The number of agents preferring a
restaurant j is denoted as p;.

. 1 ifvj e J\{j}:u(i,j) > u(i,j)
p(i,j) = 0 :
otherwise
(Definition 4.4)

Vi:pi =Y. p(j) (Definition 4.5)

i€l
The utilization fraction f is given as the number of
agents getting lunch divided by the total number of
agents. If an agent i gets lunch is given by f (i) which is
0, if 7 ate at no restaurant, and 1 otherwise (as every agent
can eat at maximum one restaurant).

f= % Y f@) (Definition 4.6)
i€l
f@)=Y c(j) (Definition 4.7)
j€J

The overall utility u is average utility per agent. The
agent utility u (i) is u (i, ), if i eats at j and 0 otherwise.

u= % . g u (i) (Definition 4.8)
u(@) =Y u(ij) c(ij) (Definition 4.9)
j€J

In experiments and simulations, I further assume
N = 1000 (1000 agents and 1000 customers), and that cus-
tomers are indexed by their utility (us (j) = 4). Thus, the
utility is uniformly distributed such that u;; = U =1
is the utility of agents eating at their preferred restaurant,
and u,g = 0.5 is the expected utility of agents eating at
any other restaurant.
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4.2. Theoretic Foundations

The capacity of all restaurants is 1. All agents prefer
the same restaurant j,. Thus, the probability that j € | is
preferred by exactly p; agents is 1 for j, and p; = N and
0 otherwise.

4.3. No Learning

As a baseline comparison Chakrabarti et al. (2009) give
an entirely random selection: In every iteration, every
agent selects one of the restaurants at random.

In Chakrabarti et al. (2009) they give the formula equa-
tion 1 as probability P (oj) for 0; agents choosing the same
restaurant, if on average A agents go to the same restau-
rant. Equation 2 simplifies equation 1 by setting A = 1.
With N — oo, one can further simplify the formula using
the Poisson Limit Theorem.

/\N 1 oj 1 /\N*Dj )\O] A

N\ /1\Y \V 1,
() (%) (-%) -5 @

Therefore, P(0) gives the probability of a restaurant
being unoccupied any evening using this random stategy,
making 1 — P(0) ~ 63.2% the average utilization.

I, therefore, expect a Gaussian distribution around
f = fnL = 63.2% for the utilization fraction. As agents
on average receive average utility (if they are successful),
I conclude that the utility is u = f - Ugg = 0.316 - Upqy-

4.4. Rank Dependent Choice

Agents i € [ incorporating the RD strategy always
turn to the restaurant j that yields them the highest utility
@d@i,j)=1 << VY :u(ij) >u(ij)).

In the KPRP, the restaurant with the highest utility
and thus the first preference restaurant is identical for
all agents (Vi,i’ € I : u(i,j) = u(7,])). Thus, all agents
i € I go to the same restaurant j. This restaurant can only
cater a single agent, resulting in a utilization fraction of
f= % For N = 1000, I, therefore, expect f = frp = 0.1%.
The (single) successful agent receives maximum utility,
resulting in # = 0.001 - 4, On average.

4.5. Limited Learning

With this strategy, all agents choose a restaurant at
random the first night. The utilization therefore is Gaus-
sian distributed around 63.2%. During successive nights,
all agents base their choice on whether they got dinner
the previous day (Chakrabarti et al., 2009):

o If some agent got food at time ¢, he will choose the
highest ranking restaurant at time ¢ + 1. (If an agent
was successful at the highest utility restaurant, he
will return there in the next iteration)

o If some agent did not get food at time ¢, he will
randomly choose any other restaurant at time ¢ + 1.

The first case is irrelevant for the KPRP, as the utiliza-
tion fraction for this part is frp = % (with frp as the
utilization fraction of the RD strategy or fraction of carried
customers by an agent preferring them), with N — co the
utilization fraction gets negligibly small (or frp = 0.1%
for N = 1000). The second case is given by A =1 — f in
equation 1 (the ratio between agents and restaurants is
(1—f) :1). Chakrabarti et al. (2009) give the following
recursion relation:

friri=1—e A =1—f 3)

In a more generalized fashion, I write:

ft = fi1- fro + (1—67(1%’1)) 4)
—_—
first try best random or return

If one assumes that f converges as f;y1 = fi, the
utilization will be Gaussian distributed around an average
value of f =43.3% and u = f - ugpg = 0.212 - Uiy

4.6. One Period Repetition
All agents choose the restaurant randomly the first
evening.

o If some agent got dinner at restaurant j at time ¢ (but
not at time ¢ — 1), he will return to this restaurant
at time t 4 1 (return).

¢ If some agent got dinner at the same restaurant j
at time t — 1 and ¢, he will compete for the highest
utility restaurant at time t + 1 (improve).

¢ If some agent did not get dinner at any restaurant
at time ¢, at time ¢ + 1 he will randomly choose any
restaurant which was vacant at time ¢ (random).

In their paper, Chakrabarti et al. (2009) both give the
distribution and simulation results.

The probability distribution of utilizations is given by
equation 6 with x; being the fraction of agents returning
to the same restaurant at time t + 1, and thus the fraction
of agents eating at a randomly chosen restaurant at time
t. As all agents who do not eat at a restaurant at time
t — 1 choose a restaurant randomly and are successful
with probability fyp, Chakrabarti et al. (2009) assume
that x; = (1 — x;_1) - fNr. x¢ is also the fraction of agents
improving at t + 2 (in this case, the expected utilization is
frRD = x%N, it can therefore be ignored if N — o0).

fr=xi 1+ (1 —x_1)- (1 - e—l) )
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frn=(=x)- (1-e)+ ©6)

- () (1)

In their paper, Chakrabarti et al. (2009) conclude that
the fixed point of this right half of both equations in 6
is at x = 0.38 or f ~ 0.77, a result I cannot replicate in
simulations.

Their original formula is not replicable: It only con-
siders those agents who are not eating at their pre-
ferred restaurant (the utilization fraction for these agents
is added in the second term). From the remaining
(1— frp) - N agents, a fraction of x;_; agents returns
to the previously chosen restaurant, and a fraction x;_»
tries eating at the highest utility restaurant (yet unsuc-
cessful, as all successful agents contribute utilization via
the second term). Thus, a fraction of (1 —x; 1 —x;_9)
of all agents randomly chooses a restaurant. These
agents are successful with probability fy, = 1 —¢ L.
Chakrabarti et al. (2009) do not deduct x;_», as these
agents are unsuccessful. In the next iteration, those
agents who successfully randomly choose a restaurant
((1 —x4—1 — x4—2) - fNL), become x;. Assuming that x;
converges to a stable state (x; = x;41 = x442), I can
drop subscript ¢, resulting in a fraction x. The corrected
formula is given in equation 7.

f=&+1-2-x)-fnr) (1= frp) + frD 7)
~

random, return, and improve best

The fraction x is given by x = (1 —2x) - (1 — 6*1) ~
27.9%, and f; decreases to f = 55.8%. The utility is given
as u = 0.279 - uyax.

Yet, one should notice that this strategy is promising
for vehicle for hire markets: The best (highest utility)
resources are different for different agents, thus, this share
is not “lost”, but will be added.

4.7. Crowd Avoiding

Agents using the CA strategy only choose restaurants
which did not serve customers the previous evening.

The probability P (0) of a restaurant being vacant at
time ¢ = 1 after being empty at time t = 0 is given by
equation 8. As the number of restaurants to choose from
at time t = 1 is reduced from 1 to 1 — f, the average
number of agents per restaurant needs to be set to A =
ﬁ to cater for this change (in equation 1).

P0)=e*=e 7 8)

Incorporating f = 1 — P (0) and the fact that only
1 — f restaurants are available into equation 8, yields the
following equation:

f=0-f (1—e11f) ©)

Equation 9 has two solutions at f; ~ 0.457 and f, ~
1.872, the latter being discarded as the utilization fraction
cannot exceed 1. The utilization fraction is therefore
f = 45.7%. As all agents who eat at any restaurant
receive average utility, I conclude that the utility is u =
0.229 - Upax.

4.8. Stochastic Crowd Avoiding

Ghosh et al. (2013) also introduced another strategy
in which the probability of returning to some place in-
versely depends on the number of agents choosing this
restaurant (ret; (t) = o,(tli—l) with ret; the probability of
returning to restaurant j and o; (t —1) the number of
agents at restaurant j at time ¢ — 1). Alternatively, this

agent will choose any other restaurant with equal proba-
bility 20D 1
0o;(t-1) ~N-T

In their paper, Ghosh et al. (2013) give an expected
utilization fraction of f ~ 80%. My simulations give an
average utilization fraction of f = 0.735. This is still better
than random (the only better than average strategy), but
it is not as good as expected.

Ghosh et al. (2013) define that a; is the share of restau-
rants with 7 agents (in our model, 7 is 0j) and a; = 0 Vi > 2.
Thus, ag + a1 +ap = 1 (number of restaurants), and
a1 + 2 - ay (number of agents). In every iteration, the
share of vacant restaurants (ag) is newly calculated, it
comprises those restaurants which were empty the pre-
vious iteration (prev), minus those restaurants to which
some agent drives to who went to an a; restaurant the pre-
vious iteration (new) and those a, restaurants in which
both agents from the previous iteration divert and no
agent goes to (both leave).

as a
ag= A9 —do-A2+ -y — (10)
R N .
prev new both leave

I assume that the difference emerges from the fact that
the authors ignored that more than two agents can head
for in the same restaurant. They state that the influence of
a; for i > 2 is negligibly small), yet, using a9 = a, +2-a3 +
3-a4+ ... the accumulated impact grows. In simulations
with N = 1000 agents, I observed 0j =3in 3.39% of all
restaurants and o; = 4 in 0.42% of all restaurants, 0j=5
to o = 10 occurred seldom, but still affected the final
result.

The utility is u = f - uzpg = 0.368 - Uy
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4.9. Stochastic Rank Dependent Choice

Agents using the SRD strategy stochastically either
eat at the highest-utility restaurant j, or turn to another
restaurant j € J. As all N agents share the same first

preference, the probability that some agent i goes to jj is
1

In the SRD1 strategy, the other agents turn to all restau-
rants except jp,. On average, N — 1 agents turn to N — 1
restaurants, yielding an average utilization fraction of
1—e~! (for those N — 1 diverting agents). The total utiliza-
tion fraction is therefore f = & + Nt - (1 —e71) = 63.2%
and the utility is # = 0.316 - 14y

In the SRD2 strategy, redirecting agents turn to all
restaurants j € | (including j,). On average, N — 1 agents
turn to N restaurants, with N — co this yields and aver-
age utilization fraction of 1 — e~! for diverting agents and
an overall utilization fraction of f = 63.2% and a utility
of u = 0.316 - tyay.

In the SRD3 strategy, diverting agents turn to their
second choice (that is the restaurant yielding second high-
est utility). As all utilities are identical for all agents, this
second preference is shared among all agents. Thus, all
diverting agents go to the same restaurant j/, resulting in
a total utilization fraction of f = & = 0.2% for N = 1000
and a utility of u = 0.002 - 145

The SRD4 strategy is identical to the SRD3 strategy
for the KPRP, as the best vacant restaurant assuming all
agents prefer the same restaurant is the restaurant that
yields the second highest utility. I, therefore, conclude
that the utilization fraction is f = % = 0.2% for N = 1000
and that the utilility is u = 0.002 - u;4x.

4.10. Results

Table 1 comprises analytical and simulation results
of the previous sections (simulation for SCA, analytical
otherwise).

For the KPRP, utilization fraction and utility are lin-
early dependent for most strategies (u = f - usg). RD,
SRD3 and SRD4 have u = f - uyuay, but the performance
with respect to utilization fraction or utility of these strate-
gies is insufficient. All strategies exceed the baseline com-
parison RD, but only SCA outperforms the baseline NL.
SRD1 and SRD2 are as good as NL, but cannot outperform
it. SRD1 and SRD2 as well as SRD3 and SRD4 perform
pairwise equally well, as the alternate choice is identical
for the KPRP.

5. Individual Preferences

In this chapter, I will apply the strategies introduced in
chapter 3 to the IP model variant. Some of the aforemen-
tioned strategies do not draw upon the actual ranking; I
can therefore safely assume that the utilization will be the
same as in the KPRP with the given adjustments.

5.1. The Model

I formally define the IP game as follows:

The utility agents i € I, |I| = N receive from carrying
some customer j € J,|J| = N is uniformly distributed,
that is every agent associates every utility level between 0
and 1 with % step size with some customer, but different
agents may receive different payoff from the same cus-
tomer. I assume strict utility levels (no two customers are
associated with the same utility by some agent) and are
therefore able to derive a preference ranking.

Every agent i € I drive to exactly one customer j € |
(Vi: Y d(i,j) = 1). Idenote that i drives to jas d (i,j) = 1.

i€l

The number of agents driving to some customer j is its
occupancy o;.

4 (i) = {1

i  drives to
nrdrvesto) (Definition 5.1)
0 otherwise.

Vjioj =) d(ij)

iel

(Definition 5.2)

Every agent drives to exactly one customer (Vi :
Y. d(i,j) = 1). If more than one agent drives to some
i€l
customer j, only one of the agents will be able to carry
j; all others will run empty. I denote that agent i carries
customer j as ¢ (i,j) = 1.

c (i ) - 1 ifi carries j,
)= 0 otherwise.

Obviously, an agent i can only carry a customer j,
if he drives to j (Vi,j : c(i,j) < d(i,j)), A customer
j is carried by at most one agent, and if there is an
agent i that drives to j, this customer will be carried

(Vj:c(i,j) = min (Z d (i,j),1>). Agents can either ran-
icl

(Definition 5.3)

domly or deterministically choose the customer they drive
to. Every agent prefers one customer over all others, as it
returns the highest utility for him (if no other agents were
driving to the same customer). This customer j yields a
higher utility than all other agents. The number of agents
preferring some customer j is denoted as p;.

. 1 itV e I\ {j}:u(ij) > u(ij)
P =19, -
otherwise
(Definition 5.4)

Viipj= Y p (i) (Definition 5.5)

iel

The utilization fraction is derived from the average
number of agents carrying a customer.
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Strategy | utilization f utility u

NL 63.2% 0.316
RD 0.1% 0.001
LL 43.3% 0.212
OPR 55.8% 0.279
CA 45.7% 0.229
SCA 73.5% 0.368
SRD1 63.2% 0.316
SRD2 63.2% 0.316
SRD3 0.2% 0.002
SRD4 0.2% 0.002

Table 1: KPRP: Comparing Strategies

1

f= N Y f() (Definition 5.6)
i€l
f@@)=Y c(ij) (Definition 5.7)
jel

The utility is given as the average utility of all agents.
The individual utility u (i,j) an agent i receives from
carrying a customer j is a random permutation for every
customer (Vi:Vj,j :u(i,j) #u(i,j/)Vji=7).

1

=5 iezlu (i) (Definition 5.8)
u(@)=Y u(ij) c(@j) (Definition 5.9)
j€l

In numerical experiments and simulations I use |I| =
|J| = N = 1000 agents and customers, and a uniformly
distributed utility (between % ~ 0 and uyy = 1). Agents
i carrying their preferred customer (Vj: ¢ (i,j) = p (i,]))
receive an expected maximum utility u,; = Uy, agents

carrying another (not preferred) customer (Y ¢ (i,j) =
j€l
1AVj:p(i,j) =1= c(i,j) = 0) receive ugpg.

5.2. Theoretic Foundations

The capacity of all customers is 1. The agent prefer-
ences are randomly distributed, Thus, the probability that
pj agents prefer customer j is Poisson distributed around
1.

Pref (p) = ¢! )

!
5.3. No Learning

One of the best strategies for the Kolkata Paise Restau-
rant Problem with respect to the utilization fraction was

to choose a restaurant randomly at every evening. I will
therefore adopt this strategy for mobility markets.

With this strategy, every driver randomly selects the
customer (independent of his individual preference rank-
ing and the history). Thus, the utilization fraction is cal-
culated as f = 1 — e~ ! and is therefore f = fy; = 63.2%.

As agents choose randomly, on average every driver
can expect utility ugyg . As only 63.2% of all drivers can
expect payoff (the others do not get a customer), only
those can get payoff. The average utility is therefore given
by equation 12. In the given experiment with N = 1000
agents, I, therefore, expect a Gaussian distributed utility
around an average of # = 0.316 - 1ax.

U= Ugyg  f = Ugvg - (1 - e*1> (12)

5.4. Rank Dependent Choice

The RD strategy is a second baseline comparison in
addition to the NL strategy. Whilst the RD strategy was
outperformed with respect to both metrics by all other
strategies in the KPRP, the high number of distinct first
preference resources makes it a reasonable choice in the
IP model variant.

Assuming a random preference ranking, it would be
beneficial to always try to get the maximum payoff, which
— on average — should also yield an average utilization
of f = frp = 632% = 1— Pref(0) = 1—e¢! with
Pref(0) being the probability that a customer is noone’s
first choice (p; = 0). The expected average utility for
successful agents — that is agents carrying a customer —
increases from ,yq tO Uy In our example, this would
be u = 0.632 - tyay.

5.5. Limited Learning

Using the LL strategy, agents choose a customer ran-
domly at time t and go to their highest utility customer
at time t 4 1, if they got a tour at time ¢, otherwise they
choose randomly again.
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The utilization fraction can be given by the following
formula:

fe=ft-1-fro+ (1 - 6_(1_ft’1)) (13)
first try best random or return

The left summand of the equation models all those
agents which chose their top priority customer at time
t after successfully choosing randomly (at time ¢ — 1 or
earlier). The success rate for these agents is frp which
is the utilization fraction of the RD strategy. The sec-
ond summand of the equation comprises all those agents
which choose randomly or which successfully chose their
top priority at time ¢t — 1 and return there. Using this
equation, the utilization fraction is f = 70.2%.

One has to differentiate between those agents who
return to their prioritized customer and those agents who
randomly choose a customer, as both belong to the sec-
ond summand of equation 13. Let’s assume that all those
agents who do not share their top priority with any other
agent will be able to return there. The fraction of re-
turning agents is, therefore, given as r = Pref (1) = e~!
(probability that p; = 1 agents prefer a customer j).

The utility is given by 14 which results in a utility of
u = 0.620 - U0 for N = 1000 for the IP model.

u:f-fRD-uan(l—ef*l)
(rum+ (1 —=7) - Uang)

(14)

5.6. One Period Repetition

Though the average utilization fraction was quite low
for the One Period Repetition strategy in the KPRP, it can
be a good solution for mobility markets: In the KPRP with
identical rankings, the fraction of agents which headed
for the best possible resource was usually lost (only one
of them got dinner). This does not happen in mobility
markets, as agents turn to different customers when going
to their preferred resource.

Drawing upon the conclusions for the One Period Rep-
etition in equation 7, I can assume that the new average
utilization fraction is given by equation 16. Over time, all
customers who are someone’s first preference will be car-
ried (second summand). frp is the utilization fraction of
the RD strategy and, therefore, the fraction of customers
carried by an agent preferring them. All other customers
(1 — frp = e~ ') will be serviced during the random step
and the improve step.

f= (x+ (1-2x) (1 —3_1)) (1- frp) + frD
(15)

= (x +(1—2x) (1 — eil>) el 4 (1 - 671) (16)

Solving equation 16 yields an average utilization frac-
tion f = 83.7%.

The average utility is given by equation 5.6, in this
formula, all those customers who are some agent’s first
preference will be serviced with maximum utility and
all others will be serviced resulting in average utility
for the respective agent. The result for this equation is
u=0.728 - .

u=(x+(1-2x) (1—371)> -efl'uavg—F

1-— eil) Uy 47

(
(

5.7. Crowd Avoiding

The strategy CA is identical to the one given in section
4.7 for the KPRP: All agents go to customers j € | who
were vacant the previous iteration (0; = 0 at time f — 1).

As this is strategy is independent of the rank, the
expected utilization fraction is f = 45.7% from equation 9,
and the utility is u = f - uzpe = 0.229 - Uy for N = 1000
agents.

5.8. Stochastic Crowd Avoiding

Like in the CA strategy (section 5.7), the strategy SCA
for mobility markets works exactly like the one for the
KPRP in section 4.8: The probability of returning to a
customer the successive day is inversely dependent on
the number of agents at this customer the previous day.

This strategy is also independent of the actual utility
resulting in expected utilization fraction of f = 0.735 and
a utility of u = f - ugyg = 0.368 - Uyax for N = 1000 agents.

5.9. Stochastic Rank Dependent Choice

Assuming every agent knows the number of agents p;
with an identical highest-ranking customer, agents could
head for this customer with a probability of pl] and head

for either
e any customer which is noone’s first choice (SRD1)
e any other customer (SRD2)
e his second choice customer (SRD3)

e the best customer which is noone’s first choice
(SRD4)

with a probability of 1 — P%

The expected utilization fraction f is the sum over
the utilization given p; agents preferring some customer
j for all possible values of p;. F(p;) is the expected



12 L. Martin / Junior Management Science 4(1) (2019) 1-34

fraction of customers being carried both in this customer
and by switching to another customer (a more detailed
description will follow in this section). Pref (p;) is the
probability that some customer is preferred by p; agents
and is given by equation 11.

N
f= lefef (p) - F(p)) (18)
pj=

The fraction of agents servicing a customer given the
number of agents preferring this customer p; depends
on the number of agents r; switching (“redirecting”) to
another customer. Every r; is associated with a probability
D (pj,r;) that r; out of p; agents divert to other customers.
Every agent that switches to another customer yields uti-
lization with probability s (success rate). In total r;/r
agents receive this payoff. If at least one agent remains
at this prioritized customer, this agent (or one of these
agents) i will receive utilization f (i) = 1. (In SRD2 and
SRD3 it is possible that redirecting agents turn to a cus-
tomer in which at least one agent remains. In this case,
diverting agents can “bully out” other agents. This is
included in the success rate s.)

pj pi—1
F(p) = LD (pivrf) -sori+ YD (pirrf) (9)
rj: Vj:

The probability that r; out of p; agents redirect to

another customer is given by D (pj, rj). Agents service
1
pi’
redirect. For larger r; and p;, one can apply the Poisson

Limit Theorem.

PiTj rj
= (P (L 1
D (pj.1j) = (r]]) (p]-> (1 p]) (20)

- 21
(-t el

The average utility is given by adapting equation 18.
The utilization fraction for p; agents preferring the same
customer is replaced by the utility U ( pj) which gives the
corresponding utility.

their top priority customer with p = —-, otherwise they

N
u= Y Pref (pj) - U (p;) (22)

pj=1

U (p;) modifies F (p;) by introducing different ex-
pected utilities for successful agents: If an agent switches
to another customer, he can only expect average utility

Uy, whilst staying with the top priority yields optimal
utility uy,.

pj—1 pj
U (py) = X D (pyrf) - sarct 32D (prrf ) o
rj: r].:

(23)

The success rate s and the utilities u,, and u,; de-
pend on the behaviour of diverting agents. Table 2 lists
these parameters, and they are discussed in the following
sections.

5.9.1. Noone’s First Choice (SRD1)

The success rate s is given by on average ¢~ ! agents
switching over to other (vacant) customers. On average,
e~ ! customers are vacant.

s=(1-¢! 24
( ) (24)

I, therefore, derive f = 79.5% and u = 0.678 - tax.
I further assume uy, = gy = 1 and Uy = tgyg = 0.5,
as agents redirect to a randomly selected customer.

5.9.2. Any Other Customer (SRD2)

The success rate s for redirecting agents changes in
comparison to the previous strategy: If an agent frequents
a customer who is someone else’s first preference, I can-
not assume that the utilization is increased. On average,
e~ - N agents divert to other customers, and there are N
customers these agents can divert to. The success rate is
the probability that a diverting agent carries a customer j
who is not preferred by any other agent (p; = 0). On av-
erage, e~ customers are not preferred by any agent. The
probability that a customer j with p; = 0 is not carried by
another diverting agent is e~* with A the average number
of diverting agents driving to a customer (A = 6%1). Thus,
the probability that at least one agent drives to some cus-

_1
tomer jis 1 —e ¢!. The success rate is, therefore, given
by equation 25.

1
s=e L. (1 — e_el) ~ 0.347 (25)

The expected maximum utility u,, is derived from
the probability that a = p; — r; agents remain with their
shared first priority customer and another b agents get to
this customer when selecting any other but their preferred
customer. a agents remain if r; = p; — a agents divert
which is given by D (pj, pj— a) from equation 21. The
probability that b agents choose this customer randomly
is given by equation 27 (swap to customer j). On average,
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Strategy | s U
SRD1 | 0.623 1.00
SRD2 | 0.347 1.00
SRD3 | 0.347 1.00
SRD4 | 0.623 1.00

Uglt f u

0.50 79.5% 0.678
0.50 69.0% 0.626
1.00 69.0% 0.690
1.00 79.5% 0.795

Table 2: IP: SRD Choice Strategy — Variables

e~ 1 of all agents divert to another customer, they choose
from all N customers, thus, A = e%l =e.

N N
Uy = Z ZD(p]«,p]«—a) - P (b swap)-

a=1b=1 (26)
@ tmax £ tat 559
a+b
AP
P(bswap)=—-e ", A=e (27)

b!

The utilization fraction is, therefore, given as f =
69.0% and the utility is u = 0.626 - tax.

5.9.3. Second Choice Customer (SRD3)

In this strategy, every agent who knows that other
agents share the same #1 priority decides to go to his #2
priority with probability p]le (with p; from Definition
5.5).

Success rate s = 0.347 and expected utility for success-
ful non-diverting agents u,, = 1.0 remain unchanged with
respect to SRD2, but u,; for successful diverting agents
increases to u;. In the numerical experiment, the top
priority customer yields a utility of 1.0, the second best
had a utility of 0.999. Thus, the payoff is always either
1 oder 0.999 (And, therefore, f -0.999 < u < f-1). With
N — oo I can assume u,;; = Uy

The utilization fraction is f = 69.0% and the utility is
1 =0.690 - Upgx.

5.9.4. Best Vacant Customer (SRD4)

Rather than choosing any vacant customer (like in the
first case), or always the second best (regardless of other
agents choosing this customer as #1) an agent chooses the
best possible customer in which no other agent might be
serving with maximum utility.

Mathematically, choosing this alternative customer
is identical to randomly choosing any vacant customer
(there are e~ ! - N vacant customers, as the customers are
assigned as a random permutation, one could also ran-
domly draw these customers). Therefore, the success rate
of diverting agents is s = 1 — e~ ! like in SRD1 (equation
24). The utilization fraction is, therefore, f = 79.5%.

If an agent approaches his top priority customer and is
the only one there, the utility will be given by 1;,4,. If the
agent diverts to another customer, the expected utility is
slightly lower. The highest utility customer cannot be the
best vacant customer. The second best customer is vacant
with probability e~!. The customer with the third highest
utility is vacant with probability e~!, but only is the best
vacant customer, if the customer wiht the second highest
utility is not vacant (with probability 1 —e~1). The I best
customer is the best vacant customer if all / — 2 customers
(all customers yielding a higher utility except the first
preference customer) are not vacant and customer [ is

vacant. Customer [ then yields a utility of 1 — %

Uglp = i <1 — Ii]) e 1. (1 B e*1>l_2

=2
1783
- max N

(28)

For N = 1000, the utility of the alternate choice is
ugr = 99.8%. With increasing N, this deviation becomes
negligible (u,;; ~ Umay). The utility is, therefore, u =
0.795 - tmqax-

5.10. Results

Table 3 lists utilization fraction and utility for all strate-
gies in this setting.

The two baseline comparison strategies NL and RD
perform equally well with respect to f, but RD outperms
NL by orders of 2 concerning u, as all successful agents
receive uy, (utility for agents carrying their preferred cus-
tomer) rather than u,,¢ (average utility for agents carrying
any customer). Except for CA, all strategies outperform
NL and RD with respect to f (and NL with respect to
u), but LL, SCA, and SRD2 fall behind RD with respect
to utility, as agents receive a lower utility if they are suc-
cessful (due to the fact that agents frequently choose a
random customer). OPR performs best with respect to
utilization but is outperformed by SRD4 regarding the
utility. SRD1 and SRD4 as well as SRD2 and SRD3 show
equal utilization, as the success rate is identical, but SRD3
and SRD4 outperform their counterparts on utility, as all
agents receive (almost) uy;qy.
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Strategy | utilization f utility u

NL 63.2% 0.316
RD 63.2% 0.632
LL 70.2% 0.602
OPR 83.7% 0.728
CA 45.7% 0.229
SCA 73.5% 0.368
SRD1 79.5% 0.678
SRD2 69.0% 0.626
SRD3 69.0% 0.690
SRD4 79.5% 0.795

Table 3: IP: Comparing Strategies

6. Mixed Preferences

This section evaluates the performance regarding uti-
lization and utility for the strategies defined in chapter 3
for the MP model: The distance to a customer is modeled
as individual component in the utility of a customer, the
payoff is modeled as the shared component.

6.1. The Model

The MP game is defined as follows: Agents i €
I,s.t.|I| = N drive to customers j € [,s.t.|J| = N
(d (i,j) = 1), agents try to carry the customer they drive to
(c (i,j) = 1), but one customer can only be carried by one
agent (Vj:c(i,j) =min ) d (i,j),1). Every agent drives

i€l
to exactly one customer (Vi : Z]d (i,j) = 1), and o; agents
€

drive to customer j (occupan]cy of j). An agent i can only
carry a customer j, if i drives to j (Vi,j: c(i,j) < d (i, ])).
The customer j that yields the highest utility for some
agent i is preferred by i (denoted as p(i,j) = 1). The
number of agents preferring some customer j is denoted
as pj.

1 if i drives to j

di,j)=4 ramvenl (Definition 6.1)
0 otherwise.

Vi:oj =Y d(ij) (Definition 6.2)

iel

1 ifi carties i

c(ij)=4 "l (Definition 6.3)
0 otherwise.

if Vi e T\ {j}ruij) >u(ij)
otherwise

p@ﬂ={é

Viipi=Y p(@j)

i€l

(Definition 6.4)
(Definition 6.5)

The utility an agent i receives from a customer j u (i, j)
is determined as the weighted average of two compo-
nents: The individual utility u; (i, j) represents the inverse
distance between agent and customer. The shared utility
us (j) is the utility which is identical to all agents i € I.
u; (i,]) is a uniform distribution in the range between 0
and 1 independently calculated for every agent, u; (j) is a
uniform distribution in the range between 0 and 1.

w(ij) =a-ui(i,j)+(1-a) us(j),0<a<1
(Definition 6.6)

The utilization fraction is calculated as the average
number of agents carrying a customer (given by f (i) = 1)
divided by the total number of agents N. The agent
utilization f (i) denotes if agent i carries any customer.
The utility u is given by the average agent utility u (i)
which is 0 if agent i does not carry any customer and is
u (i,f) if i carries customer j.

f=5 LfO)

(Definition 6.7)

i€l
f@)y =Y c(ij (Definition 6.8)
i€l
u= % : 21 u (i) (Definition 6.9)
1€
u(@) =Y u(ij)c@j) (Definition 6.10)
j€l

For numerical experiments and simulations I assume
that there are N = 1000 agents and customers. I further
assume that « = 0.5, resulting in the same influence for
shared and individual utility. The individual utility is uni-
formly distributed between % and 4, = 1. Every agent
that is successful at the preferred customer receives on
average u,; and every agent successful at a randomly cho-
sen customer receives on average Ugyg = 0.5. Without loss
of generality, I further assume that customers are indexed
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by their shared utility (us (j) = %;). Though deterministic
rather than random, this does not influence numerical
results (the index j is no more than a theoretical construct
which one can fit to the utilities). It simplifies calculations,
as one can easily iterate through all customers with a
higher (or lower) shared utility.

6.2. Theoretic Foundations

The maximum utility an agent can achieve may be
lower than u,,,c = 1 as the utility is built as the weighted
sum of two uniformly distributed variables with maxi-
Mum Upygy.

6.2.1. Probability of a Customer with a given Shared Util-
ity yielding Maximum Utility

It is possible that there is no longer a single customer
yielding maximum utility, but there can be multiple cus-
tomers with the same utility. A customer is part of the set
of top customers for some agent if there is no customer
who returns a higher utility for this agent.

For simplicity, I first consider random integers for the
individual component rather than a random permutation
for the shared component (no duplicates). With this sim-
plification, the probability that the utility retrieved from
one customer is higher than the utility retrieved from
another customer is independent of the utility yielded by
all other customers (otherwise, one had to ensure that no
duplicates occurred).

I denote the probability IT(j) that some customer j
with shared utility component us (j) is among the cus-
tomers with highest utility for any agent i € I. Assuming
that u (i,j) = a-u; (i,j) + (1 —a) - us (j) (Definition 6.6)
and that u; (i, j) is random, I conclude that this probability
only depends on the customer j.

(G j) =T1() =P (¥ :u(i,j) Zu(ij)) (29

Without loss of generality, one can assume that
us (j) = 4. In the following I will use j as u (j) - N.
Numerically, I assume that every individual utility be-
tween % and 1 is equally likely, I use g € 1...N to
model all possible individual utilities (g = u; (i, ) - N). I
separately calculate the probability that another customer
yields higher utility for those customers with a higher
(I, (j, q)) and a lower (IT; (j, q)) shared utility component.
The total number of customers considered in IT; (j,q)
and ITj, (j,q) is N — 1, customers j; < j are considered in
IT; (j,q), customers j, > j are considered in ITj, (j,q).

N
Z (G,a) T (j,9) (30)

To derive the formulas for IT; (j,q) and ITj, (j, q), I first
consider a basic example: In an environment with N =5
customers and agents, there is a customer j = 3 with
shared utility us (j) = & and an agent i assigning an indi-
vidual utility u; (i,j) = 3,4 = 3 to j. What is the probabil-
ity that a customer with a lower shared utility j; € {1,2}
or a higher shared utility j, € {4,5} is preferred over
j by agent i? Agent i can assign any individual utility
%, %, %, %, 2 to these customers j' € {1,2,4,5} (resulting in
q' € {1,2,3,4,5}). For every customer j' one determines
the probability that this customer does not reach a higher
utility than u (i,j) = a - u; (i,j) + (1 — &) - us (j) = . In
table 4 I display the (combined) utility of j (multiplied
by N for readability) and whether j or j' reaches a higher
utility for agent i (— j and — j’), depending on its indi-
vidual utility g’ that an agent i can derive from j' (left-
most column). The last row gives the probability that ;'
does not exceed j. As none of the other customers must
reach a higher utility, I multiply the probabilities (that is
% . % . % . % = %) to retrieve the probability that customer
j reaches the highest utility for agent i, if agent i assigned
him an individual utility of { = % Obviously, one has
to calculate the probability that j is the highest utility
customer for all possible individual utilities, that is all
values of g € {1...N}.

IT; (j,q) is 1 if customer j has the lowest shared utility
(j = 1) as there is no customer with a lower shared utility
who could exceed the utility of customer j. Thus, j yields
a higher utility than all customers with a lower shared
utility. Otherwise, it is the product of the probabilities
that the utility of j exceeds the utility of all customers
j/ = j — jy with a lower shared utility. The probability of
exceeding any given other customer is given by “g T but
at most 1 ( ). If a customer j has a j; lower shared utility
than j, its individual utility must be at least j; + 1 higher
than the individual utility of j () to exceed j. I, therefore,
calculate the probability that the individual utility of the
other customer j’ is not more than g + jj.

-1 )
—_ ) mm(%‘ﬁ‘]l), ifj>1
1(:9) = { =1 (81)

1 otherwise

ITy, (j,q) is 1 if customer j has the highest shared com-
ponent as no customer with a higher shared utility compo-
nent exceeds the utility of j. Otherwise, it is the product
of the probabilities that the utility of j exceeds every
customer j/ = j+ j, with a higher shared utility. The
probability of exceeding a given other customer is given
by I I but is always non-negative. If a customer j' has
a shared utility that is j, higher than the one of j, its
individual utility must be at most j, — 1 lower than the
individual utility of j (g). j/, therefore, requires an indi-
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Lower Higher
Indiv. Utility ' = u; (i,j/) N || j/=1 j=2]j=4 j=5]|
1 1=j 15—=j | 25— 3—=j
2 1.5—j 2—j 3—j 35—
3 2—j  25-j | 35— 44—
4 25—j  3—j | 4—f 45—
5 3—j  35—j | 45— 5=
prob. u (i,7) > u (i,j') | 2 ¢ | 2 o
Table 4: MP: Highest Utility Customer (Example)
vidual utility of g — j, + 1 to exceed the utility of j. The
combined utility is higher for j, if the individual utility of N
j! is at most q — jj,. Loy ! in(N—l_/qlﬂl—l)
9=1j=1
N
N—j . 1‘[/ max(0q—ju) if1<j<N
, T =xOa=in) - ifj < N =1 N
I, (j,q) = =1 (32) 1 g N-1 max(0,4—j,) 1A
. = 1 P 1 =
1 otherwise I1(j) = N it N-1 ]
Incorporating equations 31 and 32 in equation 30 N N1 N#1
yields: 1.y = miﬂ(N&ljﬂlfl)l if j = NA
7=1j=1
. N #1
N j-1
% 21 ) mm(%’qﬂ ) 1 otherwise
9=11=
N max(0,0-ju) - ; G4
IT N ifl<j<N . i L
=1 Given this approach, it might happen that two cus-
IG) =41 g Nﬁl max(O4—jn)  if i Z AN £1 tomers yield the same utility. The probability that the
N =1 jp=1 o M= highest utility is shared among different customers de-
N N-1_. , creases with N — oo. For N = 1000, approximately 3.9%
1 min(N,q+j;) e ,
N’ ;1 4L Nq L, ifj=NAN#1 of all agents prefer more than one customer (given by the
e . sum of probabilities IT (j) for all j).
1 otherwise

(33)

This equation 33 can be transformed to the random
permutation case by decreasing the denominator as the
number of options for the individual component of the
other customer is reduced by the assignment to the first
customer. This also decreases the numerator of the frac-
tion in IT;.

With the above equation with N = 1000, I expect that
4.03% of all agents prefer the customer with the highest
shared utility (that is max (j)). For those 70 customers
with the highest shared component the probability of
an agent preferring them is greater than 0.1%, thus, on
average, there is an agent for whom this customer yields
the best possible utility.

6.2.2. Expected Number of Agents Sharing a Top Priority

The number of agents sharing the same top priority
customer depends on the shared component of this cus-
tomer. The customer with the highest possible shared
utility will be chosen more often than the customer with
the lowest shared utility.
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pref (p) = (1) ) TGN (-GN 69)

- (zgj(j)> (;)P/‘ (1_ i])mm—m
(36)
- W”‘“’ 37)

6.2.3. Expected Number of Distinct Top Priorities

With the equation 37, it is now possible to calculate
the probability that a customer is noone’s first prefer-
ence (Pref (0) for p; = 0) and the expected number of
customers which are noone’s preference (as the average
probability).

I ignore duplicate first preferences and assume that
a customer is selected with his associated probability of
being first preference.

no. of not pref. customers = N —) 1 — P; (0) (38)
i€l

The expected number of customers who are not pre-
ferred by any agent for N = 1000 is, therefore, 923 (or
alternatively: I expect approximately 77 distinct first pref-
erences).

6.2.4. Expected Utility of Top Priority Customers

The expected utility of a randomly selected customer
is straight-forward: The average of two random numbers
between % and 1 is ugye = 0.5 (for sufficiently large N).
The expected utility for the first preference customer u,
is more elaborate: u,; = ;;5x = 1 can only be reached, if
both the shared and the individual utility are maximum
for an agent i and a customer j. Otherwise, the maximum
agent utility is a weighted sum of % . HTE’ weighted by
the probability that a customer yielding shared utility 4
and individual utility & (for agent i). For simplicity, I
only consider the case 1 < j < Nj; equation 39 needs to
be adjusted accordingly to equation 34 to cater for j =1
and j = N. For the defined numerical assumptions, the
expected utility of top priority customers is u,;, = 0.92.

18 min(N=1,9+j,—1)
. _Nq;/g N-1
N (39)

~ max (0,9 —ja) j+4q
N-1 2

6.3. No Learning

Agents incorporating the NL strategy randomly
choose where to drive to. Thus, the number of agents per
customer is Poisson distributed around 1. The number
of agents carrying a customer equals the number of cus-
tomers who are carried by some agent which is N minus
the number of agents who are not carried by any agent
(X c(i,j) = 0). As the number of agents driving to some

i€l

cﬁstomer j is Poisson distributed, I conclude that the num-
ber of agents who do not carry any agentis (1 —e™1) - N,
resulting in a utilization fraction of f = fn; = 63.2% and
a utility of u = f - ugpg = 0.316 - Upgyx-

6.4. Rank Dependent Choice

Obviously, only those customers who are some agent’s
first preference will be served with the RD strategy.

The utilization fraction is, therefore, given by equation
38 (f = frp = 7.7% for N = 1000). Those 7.7% of all
agents will receive maximum utility, resulting in u =
fum = 0.075 - gy (With u,;, = 0.92 from equation 39).

6.5. Limited Learning

In the LL strategy, agents decide randomly on a cus-
tomer until they are able to serve one. After that, agents
try their preferred customer. If they are being “bullied”
out, they return to selecting randomly. Those customers
who are preferred by some agent (j € J|Fie [:p(i,j) =
1) will be carried in all iterations unless they did not carry
any customer in the previous iteration t — 1 (f;—1 - frp)-
Agents who do not drive to their preferred customer

randomly select any customer, resulting in (1 —ef H’l)

as the number of agents in this phase is lower than the
number of customers to choose from.

fe=fia- frp+ (1— 1) (40)
f=lim fi (41)
u:f-fRD-um—k(l—ef’l) (42)

(r-um+ (1 —=7) - taog)

Derived from equation 41 and ?? (with frp the number
of customers who are preferred by some agent (or the
utilization fraction of the RD strategy), u,, = 0.97 and
r= Y. I1(j)-e~"0) = 0.01), I deduce that the utilization

=
frac’iion is f = 45.5% and that the average utility is u =
0.246 - Upax.
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6.6. One Period Repetition

Using the OPR strategy, agents drive to their preferred
customer after being successful with some randomly cho-
sen customer for two iterations.

frp - N agents carry the customer they prefer (frp
is the utilization fraction of the RD strategy). All other
agents follow the three-step approach ((1) random, (2)
return, and (3) improve). In every iteration a fraction
1 — 2x agents chooses randomly (x = (1 —2x)- (1 —e™1)
successful), x agents return, and x agents drive to their
preferred customer (which is already occupied by another
agent, therefore not increasing the utilization). For N =
1000 and, therefore, frp = 0.077, the utilization fraction
is f = 56.6%.

f=fro+ (1= fro)- (x+(1—-20)- (1-¢7")) 43)

The utility is calculated analogously, those frp agents
carrying their preferred customer receive u,, = 0.97, the
other agents carry a randomly selected customer and,
therefore, receive u,yg. This results in u = 0.320 - Upgy.

6.7. Crowd Avoiding

Agents who follow the CA strategy randomly choose
any customer who was not carried during the previous
iteration. Thus, there are N agents driving to (1 — f;_1) -
N customers.

fi=Q1—fia) (1- <I(\)]> (1- (1—ft1_1)~N)N)

= (1= fi)- (1—e 070 (44)

I, therefore, conclude that f = 45.7%. As all successful
agents drive to a randomly chosen a customer, I assume
that these agents receive ugyg. Thus, the utility is u =
0.229 - Upax-

6.8. Stochastic Crowd Avoiding

Using the SCA strategy, agents either return to the
same customer or drive to any other customer depending
on the number of agents driving to the customer they
drove to in the previous iteration. If at time ¢ — 1 agent
i drove to customer j (d (i,j) = 1) and the occupancy of
customer j is 0; = 1, agent i returns to customer j at
time ¢. If agent i drove to customer j at time ¢ — 1 and
the occupancy o; > 1, i returns there with probability (}—]

and randomly chooses any other customer at time ¢ with
.1 i—1
probability 0]0—
j
In simulations with N = 1000, tyax = 1 and ugye =

0.5 I observe a utilization fraction of f = 73.5% and a
utility of u = 0.368 - Upy.

6.9. Stochastic Rank Dependent Choice

With this strategy, the probability of driving to the top
customer depends on the number of agents which share
the same top priority.

Analytically, one can assume that the function of
the utilization fraction has to incorporate the no longer
random number of agents preferring some customer.
Pref (p;) is the probability that a customer j is preferred
by exactly p; agents (derived from equation 37). F (pj) is
the expected utilization, if p; agents prefer customer j. As
Pref (p;) is used to weight F (p;), one has to divide by

N
Y Y Pref (Pj) = Y I1(j) = N.
jelpj=1 j€l

N
f:zrlw)z Y Pref (py)  F (1)) (45)

i j€l \pj=1

F (pj) includes the probability that r; agents di-
vert to other customers (with probability D (pj,7;) =

((pi—r)) " e

pj pi—1
F(pj) = ,Z,lD (m,r}) s ri+ HEOD (Pj,r;l) (46)
r/: r]» =

The average utility is calculated by adapting equations
45 and 46 such that it incorporates different utility levels
regarding on the agent’s type of choice (remain with their
top priority resulting in u, or diverting to alternative
resources resulting in u,;).

1 N
U= ==~ Pref (pi) - U (pj (47)

.ZH(])]'GZ] p; ( ]) ( ])

j€]
pi—1

U(p]) = Z D (P]/T]/) §Tj- Ut
'=0
) (48)
Pj
Y. D (pprf) -
ri'=1

s, Uy, and u,; depend on the actual strategy. Table 5
compares the variables for SRD1 and SRD2.

6.9.1. Noone’s First Choice Customer
In this strategy, agents choose those customers who
are not preferred by any agent (j € J,s.t. Y p(i,j) =0).
i€l

As the number of diverting agents on average equals
the number of customers who are not preferred by any
agent, I can assume that a fraction of s = 0.632 of all
diverting agents successfully carries another customer
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Strategy | s Uy Ul f U
SRD1 0.632 092 046 89.8% 0.521
SRD2 | 0.661 092 050 88.0% 0.512

Table 5: MP: SRD Strategy — Variables

(success rate). The utilization fraction is, therefore, f =
63.8%. The utility of diverting agents (alternate utility)
is u,;. One cannot assume u,; = 0.5, as only those
customers with a lower shared component and therefore
a lower utility are being selected as noone’s preference.
For N = 1000, I assume u,; = 0.46, as on average 77
of the highest utility customers cannot be selected. The
expected maximum utility is u;;, = 0.92, according to
equation 39, the utility is thus u = 0.326 - ux.

6.9.2. Any Other Customer

The SRD2 strategy dictates diverting agents to choose
any other customer, regardless of the preferences of other
agents or own preferences. The success rate s = 0.611
therefore derived from equation 1 with A = 1 — fgp as
(1 — frp) N agents divert to N customers. frp is the uti-
lization fraction of the RD strategy and can be interpreted
as the fraction of customers who can carry their preferred
customer in the SRD strategy.

s=(1-frp)- (1—6’1}“7> (49)

Thus, the expected utilization fraction is f = 61.9%.
All agents carrying their preferred customer (i € I,s.t.Vj €
J:c(i,j) = p(i,j)) can expect u, = 0.92 (as in equation
39). Diverting agents can expect u,; = 0.462. The ex-
pected average utility is u = 0.330 - t4x.

6.9.3. Second Choice Customer

In the SRD3 strategy, diverting agents drive to the cus-
tomer yielding them the second highest utility. For this
strategy, the utilization rises only slightly in comparison
to the RD strategy, as those 92.3% of all agents who ran-
domly choose not to service the top ranked customer will
go to the second ranked customer, which in most cases
is someone else’s top priority or overlaps with another
agent’s second priority.

The number of distinct second preferences is around
93 for N = 1000. Yet, many of these customers are some
other agent’s first preference. The expected number of
customers which are either first or second preference is,
therefore, ~ 94 (in simulations).

Simulations suggest a utilization fraction of f = 9.4%
and an average utility of u = 0.091 - u4x.

6.9.4. Best Vacant Customer

A similar explanation holds for the strategy SRD4
(Best Vacant Customer): Even if agents only turn to cus-
tomers who are noone’s first preference, they will most
likely be competing there, as those customers will also be
much alike.

The total number of distinct customers in the best
vacant customer choice is approx. 74 with N = 1000.
With =~ 77 distinct first preference customers, there are
around 151 customers the agents choose from.

The actual utilization is lower, as agents do not dis-
tribute themselves uniformly. In simulations, the uti-
lization fraction was f = 12.1% and the utility was
u = 0.115 - uyqy.

6.10. Results

The utilization fraction and utility for all considered
strategies can be found in table 6.

All strategies which do not incorporate the utility (NL,
CA, SCA) are obviously not affected by mixed utilities.
LL, OPR, RD, and SRD on the opposite worsen (mod-
erately to dramatically) in comparison to the Individual
Preferences setting. Only one of the rank dependent strate-
gies outperforms both baseline comparisons: SRD1 (and
with respect to utility OPR as well). As the redirection
option for SRD3 and SRD4 is correlated to the first choice,
and due to the low number of distinct first preferences,
those strategies fall behind SRD1 and SRD2. With the de-
creased performance of rank dependent strategies (most
“first preference selections” do not increase utility and
utilization), SCA becomes the best strategy concerning
both utilization fraction and utility.

7. Individual Preferences with Multiple Customers per
District

In this model variant I assume that there are several
customers in one district, thus, an agent always has sev-
eral customers from which he can carry one even if the
preferred one is not available. I assume that every district
on average has the same number of customers, but as
customers randomly spawn in some district, there can
also be less or more customers in a district. Agents select
a customer and drive to the district in which the selected
customer is located in.
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Strategy | utilization f utility u

NL 63.2% 0.316
RD 7.7% 0.075
LL 45.5% 0.246
OPR 56.6% 0.320
CA 45.7% 0.229
SCA 73.5% 0.368
SRD1 63.8% 0.326
SRD2 61.9% 0.313
SRD3 9.4% 0.091
SRD4 12.1% 0.115

Table 6: MP: Comparing Strategies

7.1. The Model

In the IPMC model variant, customers are located to
districts. Agents i € I,|I| = N drive to their preferred
customer and are able to divert to other customers in the
same district at no cost. I denote that some customer
j € 1,]J]| = N islocated in a district k € K, |[K| = D = %
as b (j, k) =1 (j “belongs to” k). Every customer j belongs
to exactly one district k (Vj : Y b(j,k) = 1), and ¢

kekK

customers are located in district k (capacity of k).

b(j k) = {1

£ is in k
if j is 1n. (Definition 7.1)
0 otherwise

Vk:cp =Y b(jk)
i€l

(Definition 7.2)

Agents drive to customers. I denote this relation as
d(i,j) = 1. Every agent drives to exactly one customer
(Vi: Y d(i,j) =1). As agents are able to divert to other

i€l

customers in the same district, I extend d (i,j) = 1 as the
notion that agent i drives to customer j to d (i,k) = 1
to denote that agent i drives to the district k that j is
located in (d (i,j) = 1Ab(j,k) =1 = d(i,k) = 1). As
the customer j that agent i originally drove to exactly
one district k, I conduct that every agent drives to exactly

one district (Vi : ) d(i,k) = 1). The number of agents
kek
driving to some district k yields the occupancy oy.

di,j) = 1 if i drives to j
= 0 otherwise

Vjiop=Y.d(i))

icl

(Definition 7.3)

(Definition 7.4)

d(ik) = 1 ifidrivestok
710 otherwise

Vk:op =Y d (i)

icl

(Definition 7.5)

(Definition 7.6)

Agents can carry any customer that awaits a ride in the
district k that agent i drove to. I denote that agent i carries
customer j as c (i,j) = 1. One customer can only be car-
ried by one agent (Vj : }_ ¢ (i,j) < 1) and one agent i can

i€l

carry at most one customer (Vi : Y c(i,j) < 1). Agents
j€

can only carry customers located in the district they drove
to(c(i,j) < ¥ d(ik)-b(jk)). If agents are able to carry
kek

any customer, they prefer carrying him over not carrying
anyone. Thus, the total number of customers carried from
one district k is the minimum of the number of customers
in k (capacity cx) and the number of agents driving to k

(occupancy o) (Vk : Y c(i,j) - b (j, k) = min (cy, 0k)).
iel
j€]

c(if) = 1 if i carries j
] 0 otherwise

Agents can either drive to their preferred customer or
district or randomly choose a resource. Iuse p (i,j) =1 to
denote that i prefers j (j yields more utility for i than any
other customer). This is the case if no other customer ;'
results in a higher utility. The number of agents preferring
j is given as p;. Analogously, I define pj as the number of
agents preferring any customer that are located in district

(Definition 7.7)

1 iV :u(i,j) >
u(i,j')
0 otherwise
Viipi=)_p(ij)
icl
Vk:pe =) p(ij) b(k)

icl
j€l

p (i) = (Definition 7.8)

(Definition 7.9)

(Definition 7.10)

u (i,f) is a random permutation individually assigned
foreveryagent (Vie [:Vj,j € J:u(i,j)=u(i,j)=j=
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/). As agents who select their preferred resource choose
whichever customer results in the highest utility for them
and drive to the corresponding district, I define that the
utility of a district k is determined by the highest utility
of any customer in k.

Vk :u (i, k) = max (u (i,]) - b (j, k))

j€]
(Definition 7.11)

One calculates the utilization fraction as the share of
successful agents, that is agents who carry some customer.
The utility is the average of all agent utilities u (i). u (i)
is the utility agent i receives. If i does not carry any
customer, the agent utility is u (i) = 0, otherwise it is the
utility u (i, j) of the customer j that agent i carries.

f= % Y f(@) (Definition 7.12)
i€l
f@) =Y c(ij) (Definition 7.13)

j€l

u= % ~i€ZIu(i)
w(iy=3y u(i,j)-c(ij)

j€]

(Definition 7.14)

(Definition 7.15)

In simulations and numerical experiments, I assume
that there are N = 1000 agents and customers in D = 200
districts (on average ¢ = 5 customers per district), that the
utility is uniformly distributed between % and Uy = 1.
Every agent that is successful in the preferred district
receives on average u, and every agent successful at a
randomly chosen district receives on average Ugg = 0.5.

7.2. Theoretic Foundations
7.2.1. Capacity: Number of Customers per District

In theory, there can be 0. .. N customers in one district,
though both extremes are highly unlikely. Assuming that
there are ¢ customers on average per district (N = ¢D),
the probability C (c) for capacity ¢y is given by equation
50. In this case ¢ is the average number of customers
per district (in numerical experiments and simulations:

@ =5).

7.2.2. Occupancy: Number of Agents per District (based
upon Capacity)

As agents choose a customer and then drive to the
corresponding district, the probability that o agents drive
to district k depends on its capacity c,. With N agents
and N customers, the number of agents in district k with
¢ customers is Gaussian distributed around c.

ik
O (og,cx) = ——e™* (51)
Ok!
7.2.3. Same First Preference
The probability that a district with capacity cy is pre-
ferred by pj agents is calculated as a Gaussian distribution
around c, as agents randomly “choose” their preferred
customer.

Pk
Ck

Pref (cx, px) = -~ e % (52)
Pk

7.2.4. Expected Utility of Top Priority Customers

The expected maximum utility depends on the capac-
ity c;: If an agent i enters a district with c¢; customers
and he carries any customer in this district, there is a %
chance that the customer j that i carries is his preferred
customer yielding a utility of u;,.x and a 1 — Cl—k chance
that i carries any other customer, yielding a utility of on

average Ugyg-

1 ¢, —1
Um (Ck):C*‘“maxﬂLki

. 53
. o Ugpg (53)

The expected maximum utility u, in random pro-
cesses is calculated by weighting u,, (cx) by the probabil-
ity of ¢ and the expected number of successful agents
o < ¢. I, therefore, conclude u,;, = 0.59 if ¢; of district k
is unknown.

7.3. No Learning

In this strategy, every agent randomly decides which
district he will go to by randomly selecting a customer j
and driving to the district k that j is located in. The agent
is then randomly assigned a customer from the selected
district. If there are less or equal agents than customers
(ox < cx), every agent will be assigned a customers. Oth-
erwise, there is a % probability for every agent to actually
be assigned a customer.

Agents select customers and drive to the correspond-
ing districts rather than districts directly, as this increases
the utilization fraction and utility, as every district is —
on average — chosen by as many drivers as it can cater
(instead of ¢ drivers on average per district). In the ap-
pendix I calculate the utilization fraction and utility for



22 L. Martin / Junior Management Science 4(1) (2019) 1-34

district-based choice (??). To derive the utilization fraction,

I calculate the expected number of not carried customers
Ck—l

for every possible capacity cx ( Y- O (o, cx) (cx — o)) and
0=

derive the number of carried customers from it. The prob-

ability of capacity cy is derived from equation 50 and the

probability of occupancy oy is derived from equation 51.

1 N cr—1
f= P Y. Clex)- (Ck_ Y. O(okcx) (Ck—Ok)>

Ck:1 OkIO
(54)
1 N oo =1 Ok B
ZZ,E(P'(Ck— e (e — o)
() =1 Ci+ 0p=0 Ojc:
(55)

The utilization fraction is, therefore, f = fnr = 83.0%.
With average utility for all successful agents, the expected
utility is u = f - ugyg = 41.5% for N = 1000.

7.4. Rank Dependent Choice

I now consider the strategy in which every agent
drives to the district which provides him with the best
possible utility that is the district containing the customer
yielding the highest utility. There are different possible
approaches to choosing the best district: Choose the dis-
trict with the highest average utility from all customers
in this district or choose the district which contains ones
(individual) #1 priority customer. The first corresponds to
selecting a district in No Learning, the second to selecting a
customer. I only consider the latter as it results in a higher
utilization and utility. Yet, one can find some insight on
the first in the appendix.

The utilization fraction is the same as for the NL strat-
egy (given by equation 55), as the preferred customer is
randomly selected (resulting in f = frp = 83.0%). The
utility increases slightly in comparison to No Learning,
as the probability of serving the top priority customer is
increased.

N Ck
u :l . 2 C (Ck) <Ck — 2 O (Ok,Ck) (Ck - 0k)> :
q) Ck:1 Dk:0
U (Ck)
(56)

For N = 1000 and ¢ = 5 this results in an average
utility of u = 0.495 - uyax.

7.5. Limited Learning

In the LL strategy, every agent first chooses a customer
at random and - after carrying a customer — continues
with the highest ranked district. With multiple customers

in a district, one has to choose which district one deems
#1 priority (district containing highest utility customer).

The utilization fraction f depends on the fraction of
agents servicing their top district for the first time and the
fraction of agents who either randomly choose a district
or return to the best possible district. From equation 55
I derive frp = 83.0% which is the fraction of customers
carried by an agent preferring them, f; is calculated it-
eratively. On average (1 — f;—1) - N customers are not
carried by first agents choosing their preferred customer
the first time (and thus belong to the first summand of
the equation). Thus, on average A = (1 — f;_1) customers
per district are not carried by agents belonging to the left
summand of the equation.

ft=fi-1-fro+

——
first try best

N cx—1
Y Cla) (Ck — ) O(opA) - (ck —Ok)>

1
q) Ck:l

random or return

f converges towards f = 85.2% for frp = 0.830.

To calculate the utility u, I adapt equation 57 to in-
corporate whether agents expect maximum utility u,, (cx)
or average utility usye. All those agents who carry a cus-
tomer from their highest utility district receive on average
U (cx). As the right half of the equation comprises both
those agents who randomly choose any resource and
those, who return to their highest utility customer, I have
to differentiate between those groups by introducing r
as the fraction of agents returning to their highest utility
resource. 7 is calculated as thls fracction of customers in not
overutilized districts (r = Y, ij Pref (px, cx) = 0.621).

cx=1p=0

Thus, I derive u = 0.500 - 145y

u=f-frp - tm(cx)+

1 N Ckfl
+—- ) Cla) (Ck_ Y O(oxA)- (Ck—ok)>'
q) Ck:l OkZO
(r -t (c) + (1= 1) - ttang)
(58)

7.6. One Period Repetition

Agents applying the OPR strategy choose the district
containing their top priority customer after returning once
to a successful random district choice.

Drawing upon the results from section 5.6 I calculate
the utilization fraction and the utility as follows. frp
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agents carry a customer from their preferred district, all
other agents follow a three step approach: (1) random
choice (with a success probability of fyi), (2) return to
the same district (certainly successful, that is f (i) = 1,
as randomly choosing agents only drive to previously
not carried customers), and (3) try best district (with a
success rate of 0, as the agent would otherwise belong to
those frp agents who are constantly successful). In every
iteration, a share x of all agents is in step (2) and (3), and
a share of 1 — 2x is in step (1) (successful with probability
fNL, resulting in x = (1 —2x) - fyr =~ 0.312). fgp is the
utilization of the RD strategy and fy is the utilization of
the NL strategy.

f=&+1-2x)-fnr) (1 frp) + frD (59)
u=(x+1-2x)-fnr)- (1 — frp) “Ugygt (60)
Um - fRD

Thus, I expect a utilization fraction of f = 93.6%. The
average utility is u = 0.547 - uyax.

7.7. Crowd Avoiding

Using the strategy CA, agents only choose from cus-
tomers which have not been carried the previous time
step and drive to the district the selected customer is lo-
cated in. This yields a weighted selection of the districts
with too few agents. The number of customers which
can be chosen at some time ¢ is the number of customers
not chosen at time t — 1. Those remaining customers
are located in different districts. On average, a fraction
of A = ﬁ of all customers remain vacant. I assume
that these remaining customers are Gaussian distributed
across districts, resulting in A - ¢, customers remaining
per district.

f)-

f=00-
N Ckfl
(Z C (cx) - (Ck =), O(opA-cp)- (Ck_ok)>>
Ck=1 Dk:O
(61)

With the above assumptions, one can derive f = 49.7%.
As all agents randomly decide upon a resource, I conduct
u = 0.249 - upyay.

7.8. Stochastic Crowd Avoiding

With this strategy, agents deterministically return
to the same district, if the capacity of district was not
exceeded in the previous iteration. Otherwise, agents
stochastically return to the same district or drive to any
other district.

There are two different choice mechanisms: Returning
if the customer is not taken by others or returning if

the district has remaining capacity. In the appendix, I
introduce a customer-based decision but will continue
with a district-based decision in this chapter.

If the number of agents in a district does not exceed
the number of customers, this agent will return there.
Otherwise, the agent will move towards another customer
with p = 1 - % and return to the same district with

p = . The customer is then chosen at random from
all available customers. In simulations, the utilization
fraction is f = 93.8%. The utility is average for all agents
serving a customer that time step and, therefore, u =
0.469 - U0y for N = 1000.

7.9. Stochastic Rank Dependent Choice

This strategy vastly builds upon the strategy Rank
Dependent Choice. Yet, all those drivers who prefer an
overcrowded district will not carry a customer with a
given probability. With Stochastic Rank Dependent Choice,
these drivers are now diverted to another district with
some probability p = C";—kpk. The district to divert to is
either a district which has remaining capacity, any other
district, the #2 district, or the highest utility district which
has remaining capacity. The overall utilization fraction f
is calculated as a generalization of equation 18.

N N
f=Y Clcx)- ), Pref(prck)-Flerpr)  (62)

Ck:() kaO

N N
u= 3y C(c)- Y, Pref(prcp)-Ulc,pr)  (63)
Ck:() pk:O

Pref (px,cx) is the probability that p; agents prefer
a district with capacity c¢; (equation 52). C(c) is the
probability that the capacity of some district k is ¢ (given
by equation 50). The utilization fraction function F (cg, pk)
calculates the expected utilization, if py agents prefer a
district k with capacity ci (including r; agents redirecting
to other districts with probability D (cy, pk, 1x))-

Pk if pr < &

Ck

Z D (Ckr Pk, rk)'
i’k:O

F(cx,pr) =4 (s-m+cx)
Pk
+ E D (Ck/ Pk, rk)'
rr=cx+1
(s 1+ (px—1x)) otherwise
(64)
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—C rk
ornm-(3) (252)"

(1 B Pk — Ck)ﬁk—fk
Pk

(pk — Ck)rk . eCk*Pk

Vk!

(65)

The success rate s depends on the strategy and its
associated behavior in case of swapping.

The utility function U (ck, py) is given by adapting
equation 64 accordingly to equation 22:

Pk - Um if pr < ¢

Pk

Y D (ck, prs %)

rk:()

U(Ck,pk) = (S'rk'uult+ck'um)
Pk
+ X D(cx i i)
rk:0

(s 7k - ugp+ (pr — 1) - m) otherwise

(66)

Table 7 lists the variables s, Uy, and u,; for the
different SRD strategies.

In strategies SRD1 and SRD4, I assume that s = 0.595
as given by equation 67. On average 0.17N = (1 — 0.83) N
agents divert to other districts. Thus, 0.17N customers
are not being serviced by an agent to whom they are first
preference. I furthermore assume that these customers
are Gaussian distributed across all districts.

N q)ck Ck—l Czk
§ = Zﬁ.ewzﬁ.e*ck,go:&o.w (67)
=1 k 0x=0 k

In strategies SRD2 and SRD3, the success rate is s =
0.442. In this case, I calculate the expected number of
previously not serviced customers (c, = ¢, — 0x + ;) and
the probability that these customers are serviced by 7},
agents who divert to district k.

N ¢ ,
s=3 2. P(c)
Ck:l C;c

-1 "
Y (L= frp) -c)™  —((1—frp)ap)

Y
r.=0

The utility u,, is derived from section 7.2.4. In strate-
gies SRD3 and SRD4 I also use this value u;, for u,;
(the alternative choice utility), for SRD1 and SRD2 I set

Uglt = Ugog-

7.10. Results

Table 8 lists utilization and utility for all disussed
strategies for the IPMC model variant.

In the IPMC setting, OPR outperforms all other strate-
gies regarding the utility and is outperformed by SCA
concerning f by only a slight margin. All strategies except
CA exceed the utilization of the baseline comparisons NL
and RD, with respect to utility, SCA also falls behind RD
(and RD outperforms NL). I assume that a higher aver-
age number of customers per district ¢ further increases
the numbers for utilization and utility, this comparison is,
therefore, purely relative. In comparison to the previously
presented IP and MP model variants, the utility values
for different strategies in the IPMC models are close to
each other, as average utility and expected utility of a top
priority customer are rather close.

8. Mixed Preferences with Multiple Customers per Dis-
trict

8.1. The Model

In the MPMC model, customers are located in districts
(“belong to”) and the utility consists of a customer-specific
(“shared”) component and an “individual” component
that is based on customer and agent. The shared utility
models the payoff an agent receives from carrying a cus-
tomer. All agents would receive the same payoff if they
carried this customer. The individual component models
the costs to get to the pickup location which is identi-
cal for all customers in one district but varies between
different agents.

In the MPMC model, customers j € J,|J| = N are
“clustered” in districts k € K, |[K| = D = % One average
@ customers await a driver in one district. As customers
are located in a randomly drawn district, the number of
customers in a district is Gaussian-distributed around ¢.
Customers j € | belong to the district k € K in which
they await a driver. Let’s denote this as b (j, k) = 1. Every
agent is located in exactly one district (Vj: Y b(j k) =1)

keK

and the number of customers that are located in a district
k is its capacity ck.

b(j,k) = {1

0 otherwise

Vk: e = Y b (j,k)
i€l

£ iisin k
if j is in (Definition 8.1)

(Definition 8.2)

Agentsi € I,|I| = N select customers j € ] (d (i,]) =

1) and drive to the district k that j is located in. Every

agent drives to exactly one customer (Vi: Y d (i,j) = 1),
i€l

and the number of agents driving to customer j is denoted

as occupancy 0;. In the MPMC model, agents can divert
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Strategy | s U
SRD1 | 0.595 0.59
SRD2 | 0.442 0.59
SRD3 | 0.442 0.59
SRD4 | 0.595 0.59

Uglt f u

0.50 89.8% 0.521
0.50 88.0% 0.512
0.59 88.0% 0.519
0.59 89.8% 0.530

Table 7: IPMC: SRD Strategy — Variables

Strategy | utilization f  utility u
NL 83.0% 0.415
RD 83.0% 0.495
LL 85.2% 0.500
OPR 93.6% 0.547
CA 49.7% 0.249
SCA 93.8% 0.469

SRD1 89.8% 0.521
SRD2 87.2% 0.508
SRD3 87.2% 0.515
SRD4 89.8% 0.530

Table 8: IPMC: Comparing Strategies

to other customers that belong to the same district at no
cost; I, therefore, extend d (i, ) to d (i, k) to denote that
agent i drives to district k. Every agent i drives to exactly
one district k (Vi : ) d(i,k) = 1). If an agent drives to a
kek

customer j, he alsoedrives to the district k that j belongs
to(d(i,j) =1Ab(jk) =1= d(i,k)). The occupancy oy
of district k is the number of agents i driving to k.

if i drives to j

1
d(i,j) = Definition 8.3
22 {0 otherwise (Detinition 8.3)

Viioj= Zd (i,)) (Definition 8.4)
icl
1 ifidri k
d(ik) =L ifidrivesto (Definition 8.5)
0 otherwise

Vk:op =Y d (i)

icl

(Definition 8.6)

As agents independently decide upon the customer
or district they drive to, distributions in which too many
agents drive to some customers and too few customers
drive to some other agents can and do frequently oc-
cur. I further introduce the notion ¢ (i,j) = 1 to de-
note that agent i carries customer j. An agent i can
carry a customer j, if i drives to the district k that j be-
longs to (c (i,j) < Y. d(i,k)-b(jk)). One agent i can

keK

carry at most one customer j (Vj : Y c(i,j) < 1) and
i€l

one customer j can be carried by at most one agent i

(Vi : Y c(i,j) < 1). In every district, agents carry as
i€l

many customers as possible, no agent refuses to carry
a customer remaining at this district. Thus, the number
of customers carried per district is either capacity c; or
occupancy o (Vk: Y ¢ (i) - b (j, k) = min (cg, 0k)).

i€l

i€l

¢(if) = 1 if i carries j
= 0 otherwise

Agents can either drive to their preferred customer
or a randomly drawn customer (given by the strategy).
For every agent i there exists a customer j whom he
prefers over all other customers, as this customer yields
the highest utility for him. A customer j is preferred by p;
agents. Agents prefer the district their preferred customer
belongs to. A district k is preferred by pj agents.

b (i) = {1 iV u(i,f) > u(i,j)

0 otherwise

(Definition 8.7)

(Definition 8.8)

Viipi=Y p(j) (Definition 8.9)
i€l

Vk:pr =Y. p(i,j) bk (Definition 8.10)
iel
j€l

The utility an agent i can gain from carrying customer
j depends on both an individual and a shared utility



26 L. Martin / Junior Management Science 4(1) (2019) 1-34

component (u; (i,]) ,us (j) = us (i,]) Vi). Both utilities are
uniformly distributed between 0 and 1.

(i) = (i) + (1—a) s (j),0 Sa < 1
(Definition 8.11)
Vi,j €] VkeK:b(jk)=b(j k)= us(j) = us (j)
(Definition 8.12)

In the MPMC game model, the individual utility is
identical for all customers which are located in a given
district as the driving distance between agent and cus-
tomer is identical for all customers in the same location
(district).

Vke K:u;(i,j) =u; (i,k)Vb(jk) =0
(Definition 8.13)

I define that the utility of a district k is given by the
utility of the customer yielding the highest utility (see
Proposition 8.2.2). The highest utility customer is defined
as b1 (j, k) = 1. Obviously, the “best” customer j (cus-
tomer with highest utility) must be located in district k,
and there must not be any other customer ;' that also
belongs to k that yields a higher shared utility.

Vk :u (i, k) = max (u (i,]) - b (j, k))

jeI

(Definition 8.14)
1, ifb(jk)=1A

(us () = us (j") Vb (j, k) =0 V')
0, otherwise

by (j, k) =

(Definition 8.15)

The utilization fraction is calculated as the average of
all agent utilizations. The agent utilization f (i) defines
whether an agent i carries any customer. The utility is
calculated as the average of all agent utilities u (). u (i) is
0, if i does not carry any customer and the utility of the
customer j that 7 carries (u (7, ])) otherwise.

f= 1. Y () (Definition 8.16)
N iel
f@) =Y c(j) (Definition 8.17)
j€l
U= % : Z}u () (Definition 8.18)
1S
wu(@) =y u(ij)-c(ij) (Definition 8.19)

For numerical experiments and simulations I assume
that there are N = 1000 agents and customers in D = 200
districts (on average ¢ = 5 customers per district), that
a = 0.5, that the individual utility is uniformly distributed
between % and uyax = 1 (with step size %, as the indi-
vidual utility is calculated on a district basis) and every
agent that is successful at the preferred customer receives
on average U, and every agent successful at a randomly
chosen customer receives on average i, = 0.5, and that

customers are indexed by their utility (us (j) = %)

8.2. Theoretic Foundations
8.2.1. Capacity: Number of Customers per District

The capacity ¢, that is the number of customers be-
longing to district k is given as a Gaussian distribution
around the average number of customers per district ¢,
as customers randomly choose the district they belong
to. Thus, the probability for capacity cj is calculated as
follows:

_ (9D (1N (1N
cw=(%) () (-5
C,|
:q)il:.e_q)

o (69)

8.2.2. Highest Utility Customer and District
Proposition: In the MPMC partial game
model, agents only prefer the customer j
with the highest shared utility in district k. If
another customer j/ who belongs to the same
district k has a higher shared utility, j is not
preferred by any agent.

Proof. Assume that j,j’ € | are customers, k € K is
the district both customers belong to such that b (j, k) = 1
and b (j',k) = 1. Assume that j a higher utility than ;'
(u(i,j) <u(i,j')). An agent i chooses the district which
yields the highest utility, assume that this district is k
(p(i,k) = 1). Thus, VK" € K\ {k} : u(i,k) > u(i, k).
From definition Definition 8.14 I know that the utility
of a district is given by the highest utility of any of the
customers belonging to it. I assume that this customer is

IE

u (i, j) > u(i,j')

| with Definition 8.11 (70)
- Uj (1/]) + (1 - 0‘) T Us (l/]) >
a-ui (i) + (1 —a) - us (i, )
| with Definition 8.13 (71)



L. Martin / Junior Management Science 4(1) (2019) 1-34 27

woup (k) + (1—a)-us (i,7) >
“'ui(i/k)'i_(l_‘x)'us (i/j/) | —Dé'ui(i,k)
(72)
us (i,j) > us (i, ) (73)

The probability that a customer j yields the highest
utility in his district k (is the “best” customer) is denoted
as By (j,cx) and is calculated as the probability that all
customers j, with a higher shared utility us (jj,) > us (j)
choose other districts (Vjj, : b (j,, k) = 0), j belongs to k
(b (j, k) = 1) and exactly ¢, — 1 customers j; with lower
shared utility choose this district k. Without loss of gener-
ality, I assume that there are N — j customers with higher
shared utility and j — 1 customers with lower shared util-
ity (one assigns the identifiers j to customers based on
their shared utility component). N is the number of cus-
tomers and the number of agents (|I| = |J| = N), and D
is the number of districts (|[K| = D = %).

, iN\1%D—1/"%p—1N-Jj
Bl(]’ck):<c]k>D D D

N, e’
<i Jn>j
< j >1CkD - (b))
= = -.e D
Ck—l D D (Ck)!
(74)

If the capacity of (another) district is unknown, one
can use a generalization of equation 74. B (j) ensures that
all customers j, with a higher shared utility component
choose other districts and all those j; with lower shared
utility component are being ignored.

N (N=j\1°0 1\N7 D-1N"J
mo=("")s (-5) =5
j

=2 (75)

8.2.3. Same First Preference

In the MPMC model, the probability that district k
yields maximum utility is no longer equal for all k € K,
as the utility depends on a shared component all agents
agree upon.

The average number of agents choosing a district k
with individual utility u; (k) = u; (j) is denoted as ¢ -
IT (k). IT (k) is calculated as the product of probabilities
that no other customer jj, jj, yields a higher utility u (i, j;),
u (i, jn) for any agent i and is best in his district for all
customers j € J.

j—1
HP(u i,j) > u(i,j) \/Ebl i1 k) 0>-
k=1

1

N
11 P( (i,7) > u (i, jn) \/Zbl n k —0>
n=j+1 k=1

(76)

Numerically, I adapt equation 76 as follows: I iterate
through all customers with lower j/ = j — j; and higher
j/ = j+ jn shared utility component assuming Vj € J :
us (j) = q)% Vb (j, k) =0, and weighting individual and
shared utility component equally (x = 0.5). A customer

= j — ji (shared utility is j - % lower if an agent carries
j’ than if he carried j) does not exceed the utility of j if its
individual utility is less than (j; — 1) - % higher. Assuming
that individual utilities are represented by q (u; (i,k) =
Q-q- %), one can derive that the individual utility of the
district k’ that j’ is located in must not be higher than
@q + j;. Analogously, the individual utility of a customer
j exceeds the utility of j = j + j, (customer with higher
shared utility) if the individual utility is correspondingly
lower that is lower by ¢ - g — jj,. If j/ does not yield the
highest shared utility in its district, I do not consider it.

I (j, ¢, q) =

min (N, ¢ - q + ji)

j—1
1= B G-i) | 1-
L Rt N
J' best u(i)=u(i, )
u(ij)<u(ij')
j' not best or u(i,j)>u(i,j")
N—j
H;’l (]/ 4’/‘7) - 1_[ (1 - Bl (] +]h>
]h:
. max (0,9 - q — jj)
(o)
D .
17 () = Y 11, (j, 9.q) - 11}, (j, 9,9)
q=1
. D .
L (")
=1

I, therefore, expect ¢IT' (j) = @IT (k) (by (j, k) = 1)
agents preferring the district k in which j is the high-
est utility customer. Yet, the actual number of agents
preferring k is Gaussian distributed around ¢IT' (k).
Pref (pr, Il (j)) is the probability that district k with
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the highest utility customer j is preferred by exactly pi
agents.

(eIl ()
Pk

Pref (pr, ¢IT (j)) e~ 91() (78)

8.2.4. Occupancy

The occupancy of district k depends on the type of
choice: If agents decide randomly, the average number of
agents in district k is its capacity cx, otherwise, it is the
expected number of agents preferring it (¢IT' (k)). In the
following, Ay is the expected number of agents driving to
district k.

Ok

O (0, Ak) = i e M (79)

8.2.5. Expected Utility of Top Priority Customers

In the MPMC setting, all agents agree upon the same
“best” customer inside a district (Proposition 8.2.2).

To calculate the expected agent utility, I assume that
every customer in a district with capacity ¢, and highest
utility customer j yields on average u (j, k) to the agent
carrying him. #; (j) is the average individual utility of the
district k that j is located in.

C — 1
Ck Ck

(80)

if successful

(81)

The average utility of an agent who carries a customer
from his preferred district u,, = 0.785 is a weighted av-
erage of all possible u, (j, k) (weighted by the probability
By (j, ck))-

8.3. No Learning

Using the NL strategy, all agents drive to a randomly
selected customer. Thus, individual utility levels are irrel-
evant. The utilization fraction depends on (1) the capacity
¢y of district k (associated with probability C (¢;)) and (2)
the occupancy oy of district k (associated with probability

O (o, k). Clcx) = (Pk -e~? is the probability that ¢ cus-

tomers are randomly a551gned the same district given an
Ok
. . C —
average of ¢ customers per district. O (o, ¢x) = oy ek

is the probability of o) agents randomly driving to district
k containing cj customers.
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1 N cr—1
f==-Y Cla) | ex— Y, Oorcx) - (cx —ox)
q) Ck:1 OkZO

expected remaining capacity

(82)

Thus, the utilization fraction is f = fn1 = 83.0%. As
all agents decide randomly where to drive to, all success-
ful agents will receive average utility u,,¢. The utility is,
therefore, u = 0.415 - Uyx.

8.4. Rank Dependent Choice

In the MPMC model, for every customer j, I calcu-
late the average number of agents driving there if this
customer yields the highest utility of all customers in its
district k with ¢, customers.

The probability that a district is being selected utility-
dependent only depends on the customer with the highest
shared utility component u; (j) in this district and the
individual utility u; (i, k) of the district but is ignorant
about the number of customers in this district and all
other customers’ shared utility component.

Bearing that in mind I define the utilization fraction
f as follows. The probability of being the customer with
the highest utility is By (j,¢x) and the average number
of agents driving to a district k containing customer j
is ¢IT (j). All agents drive to their preferred customer

(Vi,j=d(i,j) = p (i)

j
Z (j,cx):

HMZ

]

ck—l

Ck — Zopref (Prr@-TT(f)) - (cx — Pk)>
Pk=

(83)

The utilization fraction of agents using the RD strategy
is, thus, f = frp = 30.6%. The expected average utility
u = 0.240 - uy,y is given by adapting equation 83 with the
expected utility u, (j, k) for all successful agents.

j
Z Z ]/ Ck
jeJ =1
Ckfl

Pref (pio g1 (7)) - (e = pi) e i)

(84)

C —
Pr=

/\Z\

)
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8.5. Limited Learning

Using the strategy LL, agents first drive to the dis-
trict a randomly selected customer is located in. Agents
who carried a customer at time t drive to their preferred
customer at time f + 1. The utilization fraction for the
MPMC model is calculated as follows: The left summand
comprises those agents who were successfully carrying
a randomly chosen customer in the previous iteration
(ft—1) and now drive to their preferred resource. These
agents are successful with probability frp. frp is the
utilization fraction of the RD strategy and thus the num-
ber of customers who are preferred by any agent. The
right summand comprises all other agents driving to the
remaining districts. The average number of customers
per district is adapted to A = ¢ (1 — f;_1) as the expected
number of remaining customers is reduced.

N
ft=fi-1-frRD + ;) - Y Clex)

=1

c—1
<Ck — Y O(0xA)-(ck— 0k)> (85)

Ok:()

For the expected utility one has to differentiate be-
tween randomly choosing agents and those who return
to their preferred district, as both groups are comprised
in the right summand of equation 85. Of these agents,
a fraction of 7 = 0.186 return to their preferred district,
1 — r choose randomly.

{1 N
”:f'fRD'um+$' Y. Cla)

Ck:1

cr—1
(Ck — Y. O(0k,A) - (cx — 0k)> :

OkZO

(F-utm+ (1 —7) - Uang) (86)

From equations 85 and 86 I derive f = 57.0% and
u = 0.357 - U0y

8.6. One Period Repetition

Agents adopting the OPR strategy randomly choose a
resource at time ¢, and return there at time ¢ + 1 if they
were successful at time f. At time ¢ 4 2, agents drive to
their preferred customer (after being successful at time ¢
and f+1).

The utilization fraction and utility are calculated as
follows. x = (1 —2x) - fyr. is the fraction of agents who
return to the same district and who improve by driving
to their preferred resource after returning to a random
resource. 1 — 2x agents randomly select any customer,
x = (1—2x)- fyr of these agents are successful. fyr

is the utilization fraction of the NL strategy and, there-
fore, randomly behaving agents. Further, all districts are
utilized up to min (¢, px), which comprises frp. These
frp - N agents constantly remain with their preferred
district (frp is the utilization fraction of the RD strategy).

(x+ (1 —=2x)-fnr) - (1= frp) + frD (87)

= (x+(1—=2x)- fnr) - (1 = frD) * tavg + Um * fRD
(88)

f

With fyr = 0.830, and frp = 0.308 this results in
f =739% and u = 0.457 - uyax.

8.7. Crowd Avoiding

The CA strategy ignores the utility or “rank” of cus-
tomers; agents only drive to customers who were not
carried in the previous iteration. On average, agents
choose from of A = ﬁ of all customers, resulting in
A - ¢ customers remaining per district.

N
f=0-=1)( Z_;lc(ck)'
Ckfl
<Ck — Y O(opA-cx) (ck— 0k)>) (89)
OkIO

I, therefore, conclude that the utilization fraction is
f =49.7%, and that the utility is u = 0.249 - uy4y.

8.8. Stochastic Crowd Avoiding

Agents applying the SCA strategy either return to
the same resource in the next iteration or divert to other
resources. An agent i remains at district k, if ks capacity
is not fully used (0x < ¢), or with probability g—’; If an
agent i does not return to the same district, he randomly
selects any resource k € K.

Simulations suggest a utilization fraction of f = 93.8%
and a utility of u = 0.469 - 4.

8.9. Stochastic Rank Dependent Choice

The strategy SRD dictates that agents stochastically
either drive to their preferred district or any other district,
depending on the number of agents with the same prefer-
ence (py for p (i,k) = 1). Diverting agents drive to (1) any
underutilized district, (2) any other district, (3) the district
yielding second highest utility, or (4) the underutilized
district that yields the highest utility.

The overall utilization fraction f for every strategy is
calculated as a generalization of equation 18.

The utilization fraction sums up the expected number
of agents carrying a customer (F (cg, px)) for the num-
ber of agents preferring district k (py with probability
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Pref (p, oI (j))), the capacity of this district (¢ with
probability C (k)), and the customer yielding highest util-
ity j. The utility function u analogously sums up all
individual utilities U (cy, px) analogously.

N N
f= X]; ZOC(Ck)' Zopref (Pr @11 (j)) - F (cx, i)
j€] k= D=
(90)
N N
u= Z] ZOC(Ck)' Zopref (Pr @I (j)) - U (ck, pi)
IS S pPr=
1)

The utilization function F (cy, px) is py, if the capac-
ity is not exceeded by those agents preferring district
k. In this case, no agent diverts and thus all agents can
carry a preferred customer. Otherwise, one sums up
the utilization retrieved from ry agents redirecting for all
ry < px weighted by the probability D (py, ¢k, i) that g
agents divert in a district k containing c; customers that is
preferred by py agents and is calculated as a Poisson dis-
tribution around py — ¢ (D (cx, P, 1%) = W - €%k FK),
min (ck, px — 1) agents remaining at district k carry a cus-
tomer in this district. If less agents divert than required,
not all of them will be able to carry a customer, but all
¢, customers will be carried. If more agents divert than
required, all py — r; agents carry a customer, but not all
customers are carried. Those r, agents who redirect to
another district can increase the utilization, if they are
able to carry the customer they divert to. The probability
of carrying a customer as a diverting agent is given by
success rate s. SRD2 and SRD3 allow diverting agents
to drive to fully capacitated districts. Yet, for calculating
the utilization fraction I assume without loss of general-
ity that not diverting agents favorably carry customers.
Diverting agents receive a certain utilization depending
on the success rate s which varies depending on the strat-
egy and its associated behavior in case of swapping. The
success rate factors in that diverting agents can only be
successful if no other agent is “bullied out” his preferred
district.

Pk if pr < cx
Ck
Y D (ck pr1x):
Tk:()
F(ck pr) =< (s-rp+ck) (92)
Pk
+ ¥ D(cxprri)
T’k:Ck"rl
(s 1+ (P —11)) otherwise

The utility function U (ck, px) is given by adapting
equation 92 to cater for varying utility levels. Agents

carrying a customer from their preferred district receive
on average a utility of uy, (from section 8.2.5), diverting
agents receive on average u,; if they are successful. 1,
depends on the strategy.

Pk Um if pr < cx
Pk
Y D (ck pr1i)
VkZO
U (ck, px) = q (5 7k~ Uaiy + Ce - i)
Pk
+ L D(ck promi)-
I’k:()
(s-rg-ugy+ (px — %) - ) otherwise
(93)

Table 9 compares the variables s, u,,;, and u,; for strate-
gies SRD1 and SRD2. Strategies SRD3 and SRD4 perform
worse than random, as first preference and alternative
choice are not independent of each other (thus, diverting
agents 7y are not uniformly distributed, making it impossi-
ble to analytically derive a success rate s). In simulations,
the utilization fraction of SRD3 is f = 36.7%, and its util-
ity is u = 0.283 - 0. The utilization of strategy SRD4 is
f = 47.4%, and its utility is u = 0.366 - tyqx-

In strategy SRDI1, I assume that the success rate
is s = 0.866 as given by equation 94. On average
0.697N = (1 —0.303) N agents divert to other districts.
Thus, 0.697N customers are not being carried by an agent
to whom they are first preference. I furthermore assume
that these customers are Gaussian distributed across all
districts, resulting in on average A = ¢ - 0.697 customers
per district. The success rate s is calculated as the utiliza-
tion fraction of the NL strategy with a reduced number
of customers per district.

N Ak cr—1 CZk e

s Ckgl o e e (94)

In strategy SRD2, the success rate is s = 0.850. In

this case, I calculate the expected number of previously

not carried customers (¢, = cx — 0 + 1, with probabil-

ity P (c)) and the probability that these customers are
carried by r; agents who divert to district k.

= L YR

Ck:1 ci

* (ko))

(95)

The utility u,, is the utility of strategy RD for those
who are successful. I set u,; = uzg, as the alternate
choice is independent from the actual utility.



L. Martin / Junior Management Science 4(1) (2019) 1-34 31

Strategy | s Uy Ul f U
SRD1 0.866 0.79 050 785% 0.438
SRD2 | 0850 0.72 050 77.3% 0.432

Table 9: MPMC: SRD Strategy — Variables

8.10. Results

Table 10 shows utilization and utility for the previ-
ously examined strategies in the MPMC model.

Of the two baseline comparisons, NL outperforms RD
both with respect to utilization and utility, as the number
of districts containing a preferred customer is lower than a
random selection of districts. None of the rank dependent
strategies (LL, OPR, SRD1-SRD4) reach the utilization of
the NL strategy, but OPR, SRD1 and SRD2 outperform
NL with respect to utility. SCA performs best both with
respect to utilization and utility.

9. Critical Discussion

In the previous sections I observe that utilization frac-
tion and utility of some strategy vastly depend on the
model variant: In general, one can state that using districts
(IPMC, MPMC) improves both optimization criteria. Ob-
viously, if there was only a single district (D =1, ¢ = N)
in which all customers are located, one can expect a uti-
lization fraction of f = 1 regardless of the implemented
strategy, as all agents can divert to other customers in
the same district until every customer is carried. If there
are no districts, the utilization fraction is determined by
the KPRP, or the IP and MP model variant, depending
on the other assumptions. I thus advise “clustering” the
resources (customers) based on proximity, for example by
using taxi stands. They allow agents to serve another cus-
tomer in the same district if another agent already carries
the selected customer. I notice that all strategies always
perform at least as good in IP and IPMC as in their mixed
preferences counterpart. Obviously, NL, CA and SCA are
not affected, as agents never deterministically drive to
their preferred resource, but utilization fraction and av-
erage agent utility for the other strategies decrease when
introducing mixed preferences as the number of distinct
highest utility resources decreases. The number of dis-
tinct highest utility resources depends on the probability
that a resource is preferred by any given customer which
is not identical for all resources in the MP and MPMC
model variant but depends on the shared utility compo-
nent. Due to this, exceeding fy; with rank dependent
strategies becomes difficult for « = 0.5. With increasing «
the number of distinct highest utility resources decreases,
resulting in a decreasing utility of all rank-dependent
strategies, as shown in appendix ??. Thus, I conclude
that high individual utility components are preferred by

agents, as the probability of being able to carry the pre-
ferred customer increases. In mobility markets — that is
vehicle for hire markets — I derive that one would prefer a
high influence of the cost of driving to the pickup location
which can either be achieved by revenue in a small range
or by high distances to the pickup location. Alternatively,
a coordination instance could impose personalized incen-
tives, causing agents to distribute themselves in balance
with customers.

I also observe that stochastic rank dependent strate-
gies (SRD) outperform their strict counterpart (RD). This
is because a fraction of agents chooses its top prefer-
ence, whilst the other agents can receive utility from an-
other resource. I observe that SRD1 (and SRD4 in IP and
IPMC) perform best with respect to utilization fraction f
(most customers are carried). SRD1 and SRD4 outperform
SRD2 and SRD3 in the IP and IPMC model variants of
the VFHP, and SRD1 outperforms SRD2 in the MP and
MPMC model variants, as the success rate of redirecting
agents is higher. In IP and IPMC, SRD4 outperforms
SRD1 with respect to utility, as agents always choose a
district yielding high utility. SRD4 performs poorly for
mixed utility models (MP, MPMC), as most agents share
the same highest utility district with remaining utility.
Yet, SRD2 and SRD3 require less information about the
preferences of other agents and are therefore preferred in
environments without full information.

The CA strategy outperforms the NL strategy in none
of the models and is more complex as it requires informa-
tion about the occupancy rate of all resources, making it
unsuitable for implementation. The LL strategy is outper-
formed by the OPR strategy in all models, making it less
attractive for implementation. Yet, the two-step approach
is easier to establish in a larger group of agents. From
comparing the strategies LL and OPR I conclude that
waiting for m periods before choosing the highest util-
ity resource further improves both optimization criteria
(strategy m-Period Repetition, mPR). I observe that OPR
and SCA perform best regarding the utilization fraction
and utility. Yet, agents will not be able to carry their top
priority customer with SCA in most cases (probability %).
My findings recommend that taxi drivers consider both
history and associated utility when choosing a customer
or resource.

Yet, my model draws a rather theoretical picture of
the reality: I assume that utilities u; (j) and u; (i, ) are
uniformly distributed and random (% ... 1 with step size
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Strategy | utilization f utility u

NL 83.0% 0.415
RD 30.6% 0.240
LL 57.0% 0.357
OPR 73.9% 0.457
CA 49.7% 0.249
SCA 93.8% 0.469
SRD1 78.5% 0.438
SRD2 77.3% 0.432
SRD3 36.7% 0.283
SRD4 47 4% 0.366

Table 10: MPMC: Comparing Strategies

%), allowing for an analytical approach. In most cities,
one would rather assume a majority of customers return-
ing a low or medium utility and only very few trips with
very high utility. Also, assuming Gaussian-distributed
numbers of customer per district is a major abstraction,
in reality, a small number of hot spots such as airports or
railway stations draw more attention than a large num-
ber of residential neighborhoods. Yet, the VFHP game
model I discussed in chapters 5-8 can easily be adapted
by exchanging C (c;) by more suitable functions for the
given distribution. In the MP and MPMC model variants,
I model the distance between agent i and customer j as
u; (i,]). In real world examples, u; (i,j) depends on the
history, as agents move through the city. Also, two adja-
cent resources will result in similar utilities for all agents
which is not reflected in the presented model. Though, my
model allows for extensions addressing these limitations.

In reality, the individual utility of agents — that is
distance between agent and resource — changes in every
iteration, as agents drive to customers. Thus, the utility
agents can derive from customers has to be recalculated in
every iteration. Yet, varying utilities do not influence the
general idea VFHP game model; one only had to retrieve
information about the preferences of all other agents in
every iteration. Another abstraction concerns the timing
between agents: One cannot assume that all agents select
a resource at the same time. One could impose a discrete
time model assuming that every agent drives to one cus-
tomer per discrete time step, but as driving to a customer
takes differently long depending on the distance. In the
VFHP game model, it is sufficient to assume that the num-
ber of customers and agents is identical in all iterations,
but several of the history-dependent strategies (LL, OPR,
SCA) will perform differently for agents who did not
participate in the previous iteration, as these agents will
have to select a random resource rather than using a more
promising selection. For example, agents implementing
the OPR strategy receive a certain utilization of f (i) =1
from customer j in the “return” phase, as no other agent

drives to this customer j if this resource was occupied
in the previous iteration. Yet, if agent i returns to a cus-
tomer after pausing for several iterations, it is possible
that another agent chose this resource as well, reducing
utilization fraction and utility. Also, drivers who did not
carry a customer will be able to drive to another customer
directly after, whilst agents carrying a customer first have
to finish this trip and are thus not available during the
next iteration. One can extend the VHFP game model
with a “continue carrying” phase for agents, in which
they are utilized (f (i) = 1) and the utility the carried
customer yields is divided up over the all iterations this
trip takes. Customers disappear after being carried, and
new customers appear frequently. As the shared utility of
customers is the expected revenue, the VFHP game model
can easily incorporate appearing and disappearing cus-
tomers. Also, the expected utility yielded by customers
can be difficult to determine, as individual behavior can-
not be predicted precisely. It is possible to predict general
tendencies (e.g., customers at airports often travel down-
town and thus quite far), but for other locations, one
cannot predict precise travel distances or patterns of cus-
tomers (e.g. in city centers, most customers travel short
distance, but few customers need longer transport, yet,
it is difficult to predict when exactly customers require
these longer trips). The IP and IPMC model variant do
not use shared utilities in terms of customer revenue and
are therefore more suited if the utility is unknown. In
more rural areas, the expected number of customers in a
district can be below 1, but the VFHP assumes discrete
numbers of customers per district. Whilst rounding is
reasonable for larger numbers of customers per district,
rounding will frequently result in no expected customers
in rural areas. There, vehicles for hire are usually called
by phone. Thus, a dispatcher sends a driver to pick up
this customer. The VHFP on the opposite mimics taxi
hailing or calling a nearby taxi via app, if no dispatcher
is available.

Despite the above limitations, the VHFP presents a
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suitable game model for agent behavior in vehicle for hire
markets and lays ground work for improving utilization
and utility in mobility markets.

10. Conclusion and Future Work

In this thesis I analysed two different models for mobil-
ity markets, the Kolkata Paise Restaurant Problem (KPRP)
and four model variants of the Vehicle for Hire Problem
(VFHP). To adapt the KPRP for mobility markets, I grad-
ually drop or alter the assumptions of the KPRP: Agents
no longer agree upon the resources’ utilities (IP and MP
model variants), and resources are “clustered” in districts,
allowing agents to deviate from their first choice (IPMC
and MPMC model variants). Further, I compared those
five models by testing for utilization fraction and utility
for agents using one of seven different strategies. Three of
these strategies stem from Chakrabarti et al. (2009), two
further strategies were introduced by Ghosh et al. (2013).
I developed the strategies RD and SRD to specifically ad-
dress the requirements of dynamic mobility markets. In
dynamic matching markets, the behavior of other agents
in previous iterations cannot determine the utility agents
associate with resources in the future with absolute cer-
tainty as agents and customers enter and leave the market
at will, calling for history-independent rank-dependent
strategies.

Future research will be conducted on (1) behavior of
agents, if two or more strategies are implemented in one
market and the influence on utilization fraction and util-
ity, (2) performance of the discussed strategies in practice,
(3) incentive mechanisms and their effect in practice, and
(4) the influence of the rise of autonomous cars and suc-
cessive merge of the vehicle for hire and the car-sharing
market.

If agents apply different strategies, the overall utiliza-
tion fraction and utility might increase or decrease. Also,
the utility could be unevenly distributed. For example, if
N — 1 agents play NL in the KPRP and one agent plays
RD, this agent can expect a higher utility than the other
agents (0.632 - gy vS. 0.316 - Up4y). Unilateral deviation
can therefore be beneficial for agents. In the CA strategy,
unilaterally deviating agents can implement a strategy
in which they only choose from previously occupied re-
sources, if only one agent deviates, he is guaranteed a
utilization of f (i) = 1. The OPR strategy retrieves its
high utility from agents not randomly choosing resources
which were served by other agents the previous itera-
tion, including those agents who constantly carry their
preferred customer. Single agents implementing a NL
strategy reduce the number of agents returning to their
preferred resource, decreasing the performance of the
OPR strategy.

This thesis focuses on the performance of several
strategies in theoretical settings. As discussed in chapter 9,
utilization and utility can vary as the assumptions of the
VFHP deviate from reality. With real world data on the
location of customers during a given time frame and the
routes of drivers, one can evaluate whether the strategies
improve current driver behavior. With insight from this
data analysis, one can improve the strategies presented
in this thesis and continue with incentive mechanisms to
enforce beneficial behavior.

One can use the knowledge about the theoretic (and
real world) performance of different strategies to incen-
tivize behavior that is beneficial for the entire group. As
discussed in chapter 9, agents incorporating the strategy
OPR achieve a high utilization fraction and high utility in
the IP and IPMC model. The strategy dictates a three-step
approach: A random choice of a resource, returning to
this resource once, and driving to the preferred resource.
Yet, agents might be reluctant to wait for one iteration
prior to driving to the preferred resource (e.g. due to
missing trust in other agents, bounded rationality). For
these agents, a coordination instance can offer incentives
to return to the same resource.

Developments in the field of autonomous cars will
most likely result in the end of vehicle for hire markets in
its current setup, as drivers are no longer required, but
cars independently carry passengers. Another industry
that develops towards autonomous vehicles for passenger
transportation is the car-sharing market in which passen-
gers can rent cars for a short period (i.e. for one-way
trips in major cities). The vehicle for hire market and
car-sharing market steer towards offering the same ser-
vice, if drivers become obsolete. Obviously, strategies
and algorithms to redirect agents will become increas-
ingly important; future research should therefore focus
on improving the basic strategies presented in this thesis.
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Abstract

In this bachelor thesis, I first introduce the machine learning methodology of text classification with the goal to describe
the functioning of neural networks. Then, I identify and discuss the current development of Convolutional Neural Networks
and Recurrent Neural Networks from a text classification perspective and compare both models. Furthermore, I introduce
different techniques used to translate textual information in a language comprehensible by the computer, which ultimately
serve as inputs for the models previously discussed. From there, I propose a method for the models to cope with words absent
from a training corpus. This first part has also the goal to facilitate the access to the machine learning world to a broader
audience than computer science students and experts.

To test the proposal, I implement and compare two state-of-the-art models and eight different word representations us-
ing pre-trained vectors on a dataset given by LogMeln and on a common benchmark. I find that, with my configuration,
Convolutional Neural Networks are easier to train and are also yielding better results. Nevertheless, I highlight that models
that combine both architectures can potentially have a better performance, but need more work on identifying appropriate
hyperparameters for training. Finally, I find that the efficacy of word embedding methods depends not only on the dataset but
also on the model used to tackle the subsequent task. In my context, they can boost performance by up to 10.2% compared
to a random initialization. However, further investigations are necessary to evaluate the value of my proposal with a corpus
that contains a greater ratio of unknown relevant words.

Keywords: neural networks; machine learning; word embedding; text classification; business analytics

Among this electronic information, a plethora of textual
resources such as tweets, reviews, comments, emails or news
but also scanned documents or handwritten notes are pro-
duced, and therefore techniques in the field of Natural Lan-
guage Processing (NLP) and machine learning have been de-
veloped to get meaningful knowledge from this information.

The first goal of this bachelor thesis in collaboration with
the company LogMeln Inc.! is to evaluate the current state-
of-the-art of classification techniques with neural networks,

1. Introduction

“Innovation is hard. It really is. Because most
people don’t get it. Remember, the automobile,
the airplane, the telephone, these were all con-
sidered toys at their introduction because they
had no constituency. They were too new.” Nolan
Kay Bushnell

1.1. Data availability

Data has been called by The Economist the “new oil”
(Economist, 2017) as they are now “abundant, ubiquitous
and far more valuable [than before]”. Internet, social media,
sensors, and smartphones have all contributed to the pro-
duction of electronic information whether structured or not.
Daily, 2.5 quintillion bytes of data are created (IBM, 2018).
With this increasing amount of data, a need to accurately ex-
tract, integrate and classify these resources has appeared in
the last two decades.

DOIL: https://doi.org/10.5282/jums/v4ilpp35-62

select the appropriate algorithms and subsequently tackle the
automated classification and performance analysis. These
tasks will be performed to pinpoint the most effective method
to sort textual reviews of customers about the use of Go-
ToMeeting” - an online meeting, desktop sharing and video
conferencing software - by subject (audio, non-audio).
Second, this work is also exploratory as a new method
to deal with out-of-vocabulary words is tested and compared

Thttps:/ /www.logmein.com/
2https://www.gotomeeting.com/
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with the state-of-the-art. The goal is to improve the gener-
alization power of classification methods, without deep and
heavy implementations.

1.2. Feedback loops

Part of the agile methodology, experimentation is favoured
over elaborate planning and so is customer feedback over in-
tuition (Rahimian and Ramsin, 2008). As a consequence,
one component of the methodology is to enter quickly what
is commonly called feedback loops. It consists of building
a minimum viable product, getting customers’ feedback and
used it to improve the product. In that context, many online
tools have been developed to conduct surveys, but also many
applications such as AirBnB® or Uber® include reviews as
part of their product to gain the trust of their users. If these
tools allow developers and managers to collect a signifi-
cant amount of data, there is, however, a need to efficiently
analyse these data to perform qualitative analysis and in-
fer where resources should be allocated. The third goal of
this thesis is, therefore, to present tools that managers or
entrepreneurs can leverage to build better products faster.
As a consequence, this thesis has been written with a goal
in mind to facilitate the access to modern tools for analysis,
more specifically neural networks, to add a new card in the
hands of managers to understand their customer concerns
better.

In Section 2, I introduce the theoretical background and
different concepts necessary to understand the functioning
of neural networks. I describe two commonly used archi-
tectures namely Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs) and compare their per-
formance when it comes to classification tasks. In Section 3,
I discuss the conversion of textual information in a format
recognisable by computers. I introduce three techniques to
extract information from texts: GloVe, Word2Vec, and Fast-
Text. I also propose a method to deal with words that are
not present in the training data. In Section 4, I describe the
benchmark to compare the models introduced in Section 2
and techniques mentioned in Section 3. Section 5 includes
the results and discussions following the experiment and Sec-
tion 6 is the concluding part of this thesis.

2. Text Classification and Machine Learning

“Science is the systematic classification of expe-
rience” George Henry Lewes

Text Classification (TC) (also called text categorisation
or topic spotting) refers to the identification and labelling
of themes or topics of a sentence or document (Sebastiani,
2002). An example would be to label a comment based on

the topic it covers like “audio”, “screen” and “video”. In the
early 90’s, the emergence of digital data, and the growing

3https://www.airbnb.com/
“https:/ /www.uber.com/en-MX/

computational power of machines contributed to the devel-
opment of the field. Also, the broad applicability of the task in
activities such as spam detection, metadata generation or or-
ganisation of documents attracted the interest of technologi-
cal companies. Before that time, techniques involved knowl-
edge engineering (KE) which consists of classifying a tex-
tual document based on knowledge encoded in a set of rules
manually defined (Faraz, 2015). However, in the 90’s the
machine learning (ML) paradigm shifted the attention of re-
searchers away from KE. Rather than imposing classification
rules to machines, researchers started to build solutions that
let the computer deduce the attributes that will lead to effi-
cient classification. From a pre-classified set of documents,
the machine would thus learn the characteristics of interests
to build an automated classifier.

Formally, TC tasks assign a Boolean value to each pair
(dj,c;) € D x C, with D being a training set of documents
and C = {c;...,c,} a set of predefined categories. The goal is
to approximate the target function f: D xC — [T, F] where T
indicates that d; must be classified under ¢; whereas F indi-
cates that d; must not be classified under c;. As fis unknown,
the function g: DxC — [T, F] that approximate f - also called
classifier (or model, or rule) - is used. Then, the effectiveness
of the classifier - or accuracy - refers to the degree to which
f and g coincide. Ultimately, classifying a document D under
C =[cq,..,Cj5 .o, €y ] With i=1... n can be seen as n indepen-
dent problems with f; : D — [T,F] as an unknown target
function for ¢; and g; : D — [T, F] a classifier for ¢; (Sebas-
tiani, 2002).

The first challenge lies in the so-called inter-indexed in-
consistency based on the first law of Jesse H. Shera (Clever-
don, 1984). It states that “No cataloguer will accept the
work of any other cataloguer”. This law highlights the sub-
jectivism of classification tasks and therefore points to the
non-existence of a deterministic solution - a function f - for
the classification problem. Nevertheless, in the last decades,
researchers have been looking for an optimal function g to
solve specific classification problems.

In ML, building a classifier relies on the availability of a
pre-classified corpus from which to deduce the relevant char-
acteristics i.e., a corpus on which the values of every pair
(dj,c;) € D x C are known. Besides, to evaluate the effec-
tiveness of the classifier, it is common practice to split this
pre-classified corpus between a training- set - used to build
the classifier - and a test set - to assess the effectiveness of
the classifier. Once the classifier is built, each d; from the
test set are used as input which produces a corresponding c;.
The effectiveness is measured by how often the pairs (d;, ¢;)
matches the values of the pre-classified corpus while testing.

Since the beginning of machine learning techniques for
TC, a broad range of model including rule induction, naive-
bays, decisions trees, K-nearest neighbours (KNN), support
vector machines (SVM) and neural networks have been used
to build classifiers. A comparative study of the techniques is
available in (Kaur and Kaur, 2017; Khan et al., 2010; Nikam,
2015). As pointed out in (Young et al., 2018), deep learning
architecture such as deep neural networks have increasingly
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Figure 1: Percentage of deep learning papers in ACL, EMNLE EACL, NAACL over the last six years; Source: (Young et al.,

2018)

attracted the attention of researchers as shown in Figure 1.
For that reason; this work is focusing on neural networks for
TC tasks.

2.1. Neural Networks for text classification

Artificial neural networks as defined by Dr. Robert Hecht-
Nielsen quoted in Neural Network Primer: Part 1 is:

“a computing system made up of a number of
simple, highly interconnected processing el-
ements, which process information by their
dynamic state response to external inputs.”
(Caudill, 1986).

If the essential components of neural networks remain the
same, their architecture can change a lot. For this section,
I aim to identify the state-of-the-art model for TC among
Convolutional Neural Networks (CNN) and Recurrent Neu-
ral Network (RNN). First, I describe the functioning of a
multilayer perceptron (MLP), a feed-forward neural network,
which represents one of the most straightforward architec-
tures of neural networks®. It is done to introduce the funda-
mental concepts necessary to understand the CNN and RNN.
I describe the models and their most up-to-date applications
for TC tasks.

2.2. Feed-forward neural networks

The definition mentioned previously encompasses the
essential components of modern neural networks. Hecht-
Nielsen refers to what are today called neurons with the
word “processing elements”. This computational unit re-
ceives a set of scalar x; or vector x as input, (1) multiplies

5The simplest one is a single layer perceptron

them by their importance - their weights w;-, (2) and apply
a function f such as summation or max operation. Finally,
(3) it applies a non-linear function g - also called activation
function - on the result, which represents the output - a single
scalar y or vector y as shown in Figure 2.

Artificial neural networks are made out of a multitude of
neurons that are interconnected in different layers as illus-
trated in Figure 3.

They have the power to approximate any Borel func-
tions from a finite dimensional space to another as shown
in (Hornik et al., 1989), a category under which classifiers
defined in the previous paragraph fall.

In mathematical notations, the feed-forward neural net-
work represented in Figure 3 with two hidden layers would
be expressed as follow®:

NN,y (x) = g*(g' ewhw)w?

with x € Rt an input vector (dimension of the Fig-
ure is 3), W' € RIWPut x ROUtPUL s the weight matrix from
the input to the first hidden layer, W? € RI"Put x ROUtPUL g
the weight matrix from the first hidden layer to the sec-
ond hidden layer W3 € RI"Put x ROUPUL js the weight ma-
trix from the second layer to the output layer, g!() is the
activation function in the first layer and g2() is the acti-
vation function of the second layer. In Figure 3, W', W2
and W3 are of dimension 3x3, 3x2 and 2x4 respectively.

6Some feed-forward neural networks include a bias term in some layer,
which is a neuron that is not connected with the previous layer. Figure 3 does
not have any bias and therefore the bias in not included in the mathematical
notation.
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Figure 3: Feed-forward neural network with two hidden layers; Source: Author’s own representation

literature as the parameters 0 of the neural network. In clas-

Alternatively, the hidden layers could be expressed as: sification problems, feed-forward neural networks are often
designed such as each element in the output layer is positive

1 1 1 ] and that they sum to 1. The output vector can, therefore,

h* =g (xW?) for the first layer be interpreted as a probability distribution over the different

h? = g%(h'W?) for the second layer classes[c;..., ¢, ]. This final transformation is often performed

o with a softmax function”.
This gives us:

7sof tmax(x;) = ,f;xj for x = x7...Xp
e

NN,(x) =h*w? i1

The collection of matrices W1, W2 W3 is referred in the
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Table 1: Summary of the most commonly used activation functions and their first derivative; Source: Compiled by author

Name f(x) 146)

Sigmoid #p(fx) sigmoid(x)(1 —sigmoid(x))

Tanh Z:—i: L tanh(x)=1- tanh(x)?
0, x<0

ReLu max (0, x) {
1, x>0

ELU alexp(x)—1), x<0 alexp(x)—1), x<0

X, x=0 1, x=0
Swish x *xsigmoid(Bx) PBswich(x) +sigmoid(Bx)(1— B(swich(x))

2.2.1. Input layer

The input of the neural network is usually a vector x =
(x;...x3). For TC problems, this vector is the result of a trans-
formation of textual data to a vector representation. It is
often referred as an embedding layer. I discuss the vector
representation of text in paragraph 3.1.

2.2.2. Activation functions

In the machine learning literature, many activation func-
tions including sigmoid, Rectified Linear Units (ReLu) (Hahn-
loser et al., 2000), Exponential Linear Unit (ELU)(Clevert
et al., 2015) and tanh have been considered yielding differ-
ent results. In its paper, Alcantara (2017) provides a com-
parison of different activation functions and concludes that
ELU performs the best with ReLu nevertheless yielding great
results. However, in the recent work of Ramachandran et al.,
2017, the authors claimed that no other function had been
more adopted than ReLu thanks to its simplicity and effec-
tiveness. It is also concluded that Swish, a function similar
to the Sigmoid-weighted Linear Unit (SiL) (Elfwing et al.,
2018) performed better than ReLu. As far as I know, no com-
parison between Swish and ELU has been made and it is still
an open-question to determine which one performs best. A
summary of common activation functions is available in Ta-
ble 1. Also, plots of these functions are available in Figure 4
and Figure 5.

2.2.3. Training a neural network

Neural networks must be trained to be efficient. Train-
ing a neural network involves setting the right weights in the
various matrices W: in another word, tuning the parameters
6 the best possible so the neural network approximates the
desired function. To do so, a loss function is optimised and
various techniques to perform the task exist.
Loss functions
As mentioned in paragraph 2.1, it is common practice in ma-
chine learning to split the data into a training set and a val-
idation one. Let us define the output of the neural network
as ¢ and the actual output as c. In the training set, all the
pairs (d;,c;) € D x C - each document and their correspond-
ing class c; - are known. The objective of the training is to

minimise the function L(¢,c) - a loss function - that gives a
score to ¢ based on c. The score is therefore null if ¢; = ¢;
and positive otherwise.

Recently, a comparison between several loss functions
has been performed for TC purpose (Janocha and Czarnecki,
2017). Out of 12 loss functions - showed in Table 2 - the au-
thors conclude that non-log losses are preferable for classifi-
cation purpose. In particular, they identify the squared hinge
loss (formula present in Table 1) to be the best performing
function. They note however that if much noise® is present
in the data set, the expectation loss is the preferable choice.

Training techniques

The loss function is what needs to be minimised, and the
computer must be told how to do it i.e., defining a training
algorithm for the neural network.

As pointed out in (Goodfellow et al., 2016, Chapter 8),
the training of the parameters 6 is indirect as we hope by
minimising L(¢, ¢) we will obtain the best parameters. There-
fore the techniques differ from classic optimisation problems.
This include for example not evaluating the loss on the whole
data set but rather on small batches and then average the
results for computation power purpose. Indeed, as the stan-
dard error of the mean from a sample n is <= where o is
the true standard error, training a set of 10’000 examples
takes 100 times more computational power than training a
set of 100 examples, but reduces the error only by a factor 10
(Goodfellow et al., 2016, Chapter 8). Using less than all the
training examples available is referred as mini-batch meth-
ods.

The most used category of optimisation algorithm are
named back propagation or backward propagation of errors
(Rumelhart et al., 1988) and its best representative is cur-
rently the stochastic gradient descent (SGD) (Goodfellow
et al., 2016; Ruder, 2016). It consists of an iterative ap-
proach that reduces L(¢,c) by moving the parameters 6 in
the direction opposite to sign of L’(é,c) - the derivative of
the loss function. The algorithm is shown in Figure 6.

The learning rate €, present in Figure ?? as a required
output is a parameter that defines how quickly the old pa-

8i.e. a big variability
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Figure 5: Plot of the Swich function with different betas; Source: (Ramachandran et al., 2017)

Algorithm Stochastic gradient descent (SGD) update at training iteration k

Require: Learning rate €.
Require: Initial parameter
while stopping criterion not met do
Sample a minibatch of m examples from the training set {:1:1 IRERRY } with
corresponding targets ¢, . _
Compute gradient estimate: g < Jr;ll Ved L(g(:vi ;0), c, )
Apply update: 8 < 6 — cg
end while

Figure 6: Algorithm of SGD. Note that the function g(x;; 6) = ¢; is the one referred to in 2; Source: (Goodfellow et al., 2016,
Chapter 8)

rameters are forgotten compared to the new one. It has been one presented in 2.2.3.1) (Bottou, 1998; Kiwiel, 2001). Fur-
demonstrated that, if the learning rate is appropriately set, thermore, Bottou, 2012 suggest to update the learning rate
using SGD, the function will surely converge to a global min-  in function of the iteration - also called epoch - as follow:
imum or local minimum, if the function is convex (such as the
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Table 2: List of loss functions tested in (Janocha and Czarnecki, 2017). The authors name “y” the true value. I use the
notation c. Similarly, the output of the neural network is named “o” whereas I name it ¢; Source: (Janocha and Czarnecki,

2017)
symbol name equation
A L, loss ly—oll
A,y L, loss ly—ol?
Aoo expectation loss |y —o(o)ll4
Ayo0 regularised expectation loss || y —o(o) ||§
Aoy 0O Chebyshev loss max;|o(o)V) — y|
hinge hinge (margin) loss >}, max(0, 3 — y%0")
hinge®>  squared hinge (margin) loss . max(0, 3 — 3ol
hinge® cubed hinge (margin) loss 3}, max(0, 3 —JWoU)3
log log (cross entropy) loss -2 yPloga (o)
log? squared log loss —Zj[y(j)loga(o)(j)]2
. _Zj U(o)(j)y(j)
tan Tanimoto loss @I Y S, 0@y
. Z ) c-(o)(j)y(j)
De¢g Cauchy-Schwarz Divergence —log m
2006, deep neural networks tended to produce inaccurate
1 results and one reason for that is that initialisation of the net-
€ = fom work was usually totally random (Erhan et al., 2009; Glorot
0

With e, the initial learning rate and 6 a hyperparameter’
to be set. However, as pointed out in (Zeiler, 2012), setting
the hyperparameters alter the results of the neural networks,
and the tuning can be tricky. He, therefore, presents an im-
provement of the standard SGD, ADAELTA, that, when used,
the performance of the neural networks is not sensitive on
the hyperparameter of the learning rate. The algorithm is
shown in Figure 7.

Moreover, similar algorithms to ADADELTA exist such as
ADAM (Kingma and Ba, 2015) or Nadam (Dozat, 2016). Fi-
nally, it is worth to point out that Ranganathan and Natara-
jan (2018) recently developed a new method of backpropa-
gation without using SGD but rather Moore-Penrose Pseudo
Inverse'” with promising results.

Initialisation of the network

At the beginning of the training, the weights in the different
matrices W must be set. This point can determine whether
the loss function - regardless of its form - will converge or di-
verge. Therefore, two underlying questions emerge from this
issue: what is the ideal magnitude of the initial weights and
what is the range in which they must be included? Before

°In machine learning, the word “hyperparameter” is used to distinguish
from the parameters 6. Hyperparameters are higher level parameters set to
configure properties of the neural network.

10A generalisation of the notion of inverse matrix that satisfies the four
Moore-Penrose conditions (Penrose, 1955)

and Bengio, 2010; Sutskever et al., 2013). This resulted in
errors such as vanishing (converging close to 0) or exploding
(becoming high) gradients which does not allow the neural
network to approximate the required function. In addition,
neurons tended to become saturated - setting output value to
0 due to very small gradients. Likewise, output values could
become too high - or die - resulting in a gradient of 0 due
to inputs being negative caused by a big negative change in
the gradient during the previous iteration. These issues can
be solved with a wise choice of the loss function, learning
algorithm, and effective initialisation of the network. An ini-
tialisation method - the xavier initialisation - introduced in
(Glorot and Bengio, 2010), has become a popular technique
among researchers (Goldberg, 2015). It consists of initialis-
ing the matrix as follow:

/o 6
\/din + dout ’ \/din + dout

With Ula, b] being a uniformly sampled value between
a and b, d;n is the dimension of the input vector, and d,,;
is the dimension of the output vector. Using this initialisa-
tion makes sure that the distribution of the input is centred
around 0 and of variance 1. However, this method assumes
that the activation function is linear which is not the case
for ReLu for instance. Also, this method seems not to work
for very deep models (Glorot and Bengio, 2010). He et al.

W ~ U[— ]
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Algorithm Computing ADADELTA update at time ¢

Require: Decay rate p, Constant ¢
Require: Initial parameter

Initialize accumulation variables E[g%]o = 0, E[A6%]o = 0
fort =1 :T do %% Loop over # of updates

Compute Gradient: g,

Accumulate Gradient: E[g%]: = pE[g°]:—1 + (1 — p)gi

Compute Update: Axy = —

RMS[AQ]; 4
RMS[!]]: gt

Accumulate Updates: E[A@%]; = pE[Ag?]i—1-+(1—p)A87

Apply Update: 6,41 =8, + A8,

end for

Figure 7: Algorithm of ADAELTA. Note that RMS[x], = v/ E[x], + € as in (Becker et al., 1988). The hyperparameters p and
€ do not alter the performance of the model significantly; Source: (Zeiler, 2012).

a) underfitting

b) good approximation

¢) overfitting

Figure 8: Illustration of 1) underfitting, 2) a good approximation and 3) overfitting; Source: Author’s own representation

(2015) offer, therefore, to solve these two issues by doing an
initialisation as follow:

2
W~U((0;\| —
( dm)

With N(a, b) being a normal distribution of mean a and
standard deviation b.

Generalisation challenges and regularisation

As defined at the beginning of this section, the accuracy of
the classification algorithm is how often the couple (d;,c;)
matches the values of the pre-classified corpus. Also, it was
mentioned that the data set is usually split between a training
set and a test set. When training the algorithm, we therefore
obtain a training error - the proportion of examples for which
the model produces an incorrect output. Similarly, we obtain
a test error, when running the model on the test set. One
challenge in training a model is to avoid a training error that
is too high - problem named underfitting - which is the result
of a high bias. It produces a model that is too general and not
capable of proper predictions with unknown inputs. A sec-
ond challenge is to have a gap between the training error and
test error to be too wide - which is called overfitting - which
makes the model to be too specific to the training set and thus
not generalizable for new data. Both problems are illustrated
in Figure 8 with an analogy to regressions. It must be pointed
out that no classification algorithm exists that outperforms

other on all possible data distribution. It is known as the no
free lunch theorem (Wolpert, 1996) which is a generalisation
of the inter-indexed inconsistency mentioned earlier in this
section. Nevertheless, we can find algorithms that perform
well on a specific distribution. As expressed in paragraph
2.1, neural networks are particularly capable of approximat-
ing any Borel functions. However, it makes them also par-
ticularly prone to overfitting. To minimise it, one could get
more and better data or regularize the model.
Regularization “ is any modification we make to a learn-
ing algorithm that is intended to reduce its generalization
error, but not its training error” (Goodfellow et al., 2016,
Chapter 5). Regularization is a widely researched topic in
machine learning but the most common forms of regulariza-
tion are weight penalties, early stopping, and dropout.
Weight penalties
Weight penalties consist of adding an element to the loss
function L(¢,c) depending on the magnitude of the weights
in the matrix W and a hyperparameter y controlling for the
amount of penalty. Two common weight penalties used are
called L1 - also called Lasso regression (Tibshirani, 1996) -
and L2 regularisation - also called Tikhonov regularisation or
ridge regression (Ng, 2004). Let’s define a new loss function
L*(¢,c), below the equations of L1 and L2:



E. Vilar / Junior Management Science 4(1) (2019) 35-62 43

Error

——— Training error
Validation error

Overfitting
is starting

.

o

Iteration

Figure 9: Illustration of overfitting and when the training should stop; Source: Author’s own representation
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Both methods tend to penalise large values in W by
shrinking them towards 0, however, in L2 values are squared
due to the matrix multiplication and are therefore more pe-
nalised. In machine learning literature, L1 appeared first,
but L2 has been outperforming L1 in most cases (Ng, 2004).

Early stopping
Early stopping merely consists of stopping the training ses-
sion before the model starts to learn too much specificity on
the training set. This is achieved by stopping when the val-
idation error starts to become greater than for the previous
epoch. Indeed, that would mean that the gap between the
validation error and the training error is widening and there-
fore the model starts to become too specific to the training
set as shown in Figure 9.

Dropout
Dropout is a method introduced in (Srivastava et al., 2014)
that consists of temporarily removing random neurons of the
network as shown in Figure 10. A neuron has a probabil-
ity p of being removed and the authors suggest starting with
a value of 0.5 and then adjust if necessary. The rationale
behind it is inspired from the role of sex in evolution (Liv-
nat et al., 2010): sexual reproduction generally involves tak-
ing half the genes of the male and half of the women ones
forcing the genes to “work” together. Similarly, by dropping
out neurons from the network, they are obliged to work with
randomly selected neurons. It means that a neuron will not
overly rely on a specific underlying neuron and learn to adapt

from different inputs, which is the end goal of regularisation.
Empirical studies have suggested that dropout is a very ef-
fective method of regularisation, in particular with the ReLu
activation function (Dahl et al., 2013; Warde-Farley et al.,
2013).

2.3. Convolutional Neural Network

For TC tasks, the input of the neural networks is often a
sentence or a set of phrases. These have to be encoded in a
vector representation (discussion about it in Section 3). This
could easily be achieved by considering the sentence as a bag-
of-words. However, this method does not take into account
the word order. Yet the meaning of a sentence is highly de-
pendent on the word order. CNNs are designed to take into
account the context around each word and therefore avoid
to consider the input as a bag-of-words. They have been
first used in image recognition and then introduced to the
NLP community with the work of Collobert et al. (2011) and
then showed excellent results even with shallow architecture
(Kalchbrenner et al., 2014; Kim, 2014). Since then, CNNs
have been continuously used for TC tasks representing the
state-of-the-art of text classification techniques (Agrawal and
Awekar, 2018; Georgakopoulos et al., 2018; Le et al., 2018;
Salinca, 2017; Sundstrém, 2017). Zhang et al. (2015) de-
veloped a similar model to Kim’s working at a character-level
rather than word level with results varying from a data set to
another. Finally, in (Johnson and Zhang, 2017) a deep pyra-
mid CNN model with 15 weight layers was developed. To
avoid extravagant computing costs, they decrease the com-
putation time allowed to perform the task in function of the
layer depth (from which the pyramid reference comes from).
So far this architecture has been the best performing one on
several TC tasks.
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a) Before dropout

fou)
Dol
ofolc

a) After dropout

Figure 10: a) represents a two-layer neural network. b) is the same network with a dropout deactivating two neurons; Source:

Author’s own representation

The architecture of CNN is similar to the MLP model in-
troduced in section 2.2. The difference lies in the addition
of a convolutional layer and a pooling layer represented in
Figure 11.

2.4. Convolutional layer

The convolutional layer is present to extract from the in-
put the most salient information - also called feature (more
discussion about it in paragraph 3.3) - around a particular
window of h words referred as the filter'! in (Kim, 2014).
For a filter of size 2 and the sentence “we unlock the potential
of the modern workforce”'?, the convolutional layer extracts
the features from “we unlock”, then “unlock the”, then “the
potential” and so forth. Similarly, a window of size 3 on the
same sentence extracts features in “we unlock the”, “unlock
the potential”, “the potential of” etc. For each filter, a feature
mabp is created that, from each extraction, stores the different
features.

Formally, the layer receives an input vector s € R® con-
structed from a sentence for instance. A dot product is per-
formed between a vector of weights w € R" and each w-
gram'® in s resulting in a new set of features e = [e;...e,].
The value of n will change depending on the dimension of
s and w. If s>w then n=s-m+1 (narrow convolution), else
n=s+m—1 (wide convolution) with all the e; =0 fori >s.

In the model presented by Kim, a multichannel architec-
ture has been designed - that is a single layer that applies

The filter has the goal to capture the context

12gentence from www.logmeininc.com/

13«ywe unlock” would be a 2-gram in the sentence “we unlock the potential
of the modern workforce”. “we unlock the potential” would be a 4-gram.

multiple filters with different sizes on the input and stores
the features. Kalchbrenner et al. (2014) later added multiple
convolutional layers in their model.

2.4.1. Pooling layer

After the convolutional layer, a set of features is stored
for each filter in the filter map. The pooling layer will simply
extract the most important feature in each filter map with a
function such as max(x) called 1-max pooling. This is per-
formed to reduce the size of the output, reducing thus the
computation power required. In addition, as it reduces the
number of parameters 8 (w is included in 0), it reduces the
risk of overfitting. Kalchbrenner et al. (2014) replaced the
1-max pooling layer by a dynamic k-max pooling layer in
charge of extracting the k most important features from the
different feature maps. It is called dynamic as the value of
k varies in function of the number of the current layer 1, the
total number of layers L, the dimension of the input s and
k;q: the number of features that are extracted from the last
convolution:

L—1
k; = max (kg - s)
Several methods of pooling exist also using the average
or the summation of the features in e, but max() is the most
widely used.

2.5. Recurrent Neural Network

While basic feed-forward neural networks are not able
to take into account the word order, we have seen that, by
adding a convolutional layer to the architecture, they become
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Vector representation of text
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Figure 11: Illustration of a convolution and a 1-max pooling layer. Each word in the sentence “we unlock the potential of the
modern workforce” is represented by a vector of dimension 7. In green, a filter of size 1 is applied, in blue a filter of size 2,
in red a filter of size 3 and in yellow a filter of size 4. For each filter, the result is a filter map. For each filter map, a 1-max
pooling operation is applied. As 4 different filters were used, the output is of size 4 since only one feature is extracted from

the 1-max pooling layer; Source: Author’s own representation

capable of taking into account the context of a word. How-
ever, they are not able to take into account the full context
as filter sizes are set as hyperparameters. Also, the size of
the input vector has to be fixed and therefore during the pre-
processing of the data a padding operation - i.e., setting all
the input vectors to the same size - must be performed. It is
usually done by setting the vector size as big as the longest
input in the data set.

Recurrent Neural Network (Elman, 1990), shown in Fig-
ure 12, have been particularly suited to work with textual
data (Mikolov et al., 2010; Mikolov et al., 2011) because they
allow processing variable-length inputs. They do that by be-
ing recurrent as they perform the same task for every element
of a sequence. The output is then dependent on the previous
computation. Compared to MLPs or CNNs, RNNs have an
additional component - a hidden state vector - that memo-
rises the previous information. Using the same sentence “we
unlock the potential of the modern workforce”, the model
first processes the word “we”, then the word “unlock” taking
into account the computation performed for “we”. Then, it
processes the word “of” taking into account the computation
performed for the word “unlock” which was computed using
the computation for the word “we”. The algorithm goes one
until the end of the sentence. The output includes, there-
fore, all the computation performed for every single word in
the sentence. We understand therefore, why RNNs have first
been used for language modelling (Martens, 2011; Mikolov
et al., 2010, Mikolov et al., 2010): if the output of the com-
putation is a conditional probability based on the previous
words, they can thus predict the next word (Sundermeyer
et al., 2014). Similarly, for TC, after each word the condi-

tional probability of the sentence being in a class category
is updated until the end of the sentence. The output repre-
sents the probability of the whole sentence being classified in
a certain category based on all the words in it.

Formally, for an input vector x =[x, ...X;,, ] €R™", a
scalar v, is formed by concatenating the vector representing
a word in x, and s, is the hidden state at iteration 0. Then
for i starting at 1'*

v; = concatenate(x;) = [X15 ..} Xinpue ]
si=fW +s,,V)
yi =8(S8V)

Where W and V are weights matrices, fan activation func-
tion and g another function that results in a probability dis-
tribution y = [y;,...y,]). In their original paper, Mikolov et
al. used a sigmoid function for f and a softmax for g. For
classification tasks, the intermediate values of y; are often
ignored and only the final one, x,, is used as it represents
the probability of the whole sentence being in a certain class.
From the notation above we can observe the recursive nature
of the neural network. If we model the hidden state at the
3rd iteration, the equation would be:

s3 =f(vsW +5,V)
=f (VW + f(v,W +5,V)V)
= f(vsW + f(vuaW + f (v W +5,V)IV)V)

14please note that I use the notion [a, ..., b] to define a set and [a;...; b]
for the concatenation operation
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Figure 12: Representation of a Recurrent Neural Network (RNN) with an input vector of dimension 3; Source: Author’s own

representation

As the process is iterative, we understand how the size
of the input can be flexible. Conceptually, the RNN is very
similar to an MLB however, the number of hidden layers is
the same as the dimension of the input. Therefore, a layer is
“created” for each word that is present in the sentence that
we want to classify.

This structure also has some drawbacks. Indeed, due to
their recursive nature, RNNs are often difficult to train as they
can become very deep neural networks. As a consequence,
they often face the problem of vanishing gradient explained
in paragraph 2.2.3.4. Also, when it comes to language mod-
elling or classification tasks, sometimes a big gap between
relevant information is found. Indeed, it can be that rele-
vant words are at the beginning and the end of the sentence.
Therefore, it would be hard for the last iterations to capture
the relevance of the first word as it is “drawn” by all the it-
erations that have been previously performed (Olah, 2017).
For these reasons, several improvements in their architecture
have been made to tackle classification tasks. The most com-
monly used are Long Short-Time Memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) and its variant Gated Recurrent
Unit (GRU)(Cho et al., 2014).

2.5.1. Long Short-Time Memory

Simple RNNs introduced the hidden state layer to memo-
rise information. LSTM has an additional variable that tracks
the value of the gradients - the memory cell - and three addi-
tional layers to monitor and control the memorising of infor-
mation commonly named input gate, forget gate and output
gate. The different gates can be thought as neurons as in-
troduced in paragraph 2.2. In LSTMs, the hidden state layer
and the output are the same and therefore y; =s;.

Conceptually, the memory cell is an object that is go-
ing to be updated during the whole iterative process. For
each iteration, the memory cell goes through the output gate
which gives the final output y; =s;. How much information
comes from the previous iteration that must be forgotten in
the memory cell is monitored by the forget gate. Similarly
how much of the new information from the current iteration
should be added to the memory cell is monitored by the input
gate.

Formally, we define i, f0,0,n € RY™ vectors referred as
input gate, forget gate and output gate and new candidate
respectively. Also are defined ¢ = [cy,...C3,qim, the memory
cell and c; the memory components. Then: ’

n; = tanh(Wy[c;_1, ¥i—1;%;1) (€Y)

foi=0Wy,lcim1, i1 %:]) 2
i =o(Wilci1, Yim13x;]1)

ci=fo;%ci_ +n;xi; 3)

0; = oc(Wolcy, yicas xi1) (C))

Yi = tanh(c;) * o; (5)

First, the new candidate (1) is computed through a tanh()
function which represents the new information coming from
the new word x;. The tanh() function is applied to make sure
that the values are included in the range [—1 : 1]. Then, the
forget gate (2) and the input gate (2’) are computed simul-
taneously through a sigmoid function o. This step, thanks to
the sigmoid function, tells that value close to 0 must be for-
gotten and values close to 1 must be saved. From there, the
memory components c; (3) can be computed from the new
candidate, the input gate and the forget gate again with a
sigmoid function. The output gate (4) is computed from the
new memory component ;. Finally, the output y; (5) is com-
puted from the dot product between the tanh of the memory
component and the output gate. y, therefore represents the
final probability distribution over the different classification
categories.

2.5.2. GRU

The GRU architecture is a simplification of the classic
LSTM model but has shown to be competitive for TC tasks
(Berger, 2014). Like normal RNNs, GRUs use a hidden state
layer but have an update gate and a reset gate.

Mathematically, we define u, r,n € R4™ | vector referred
as update gate, reset gate and new candidate respectively,
then:
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U =o(W,[yi—1;x:])
ri=oW,[ci—1, yims x:1)

n; = tanh(W,[y;—y X ri;%;1)
Yi=(—uw) Xy +u xn

Similar to the LSTM architecture, the gates monitor the
quantity of new information that should be added at each it-
eration. The output is simply an interpolation between the
previous iteration - controlled by the update gate - and the
new iteration-controlled by the reset gate through the com-
putation of the new candidate.

Even if LSTMs, GRUs, and variants are better suited for
language modelling, they have been able to compete against
CNNs for TC tasks (Ding et al., 2018; Lee and Dernoncourt,
2016; Liu et al., 2016; Zhou et al., 2016a). Recently, Yu
et al. (2018) successfully mimicked skimming, re-reading
and skipping techniques performed by humans during TC
tasks with an LSTM design. They achieved that by adding
a cost function that is minimised during the whole process,
providing a better accuracy and higher efficiency than previ-
ous approaches. Also, Ma et al. (2018) provide an extension
of LSTM that has a separate output gate that incorporates the
explicit knowledge such as common sense facts for accom-
plishing a specific task. The architecture achieved promising
results.

2.6. Comparison

We have seen that CNNs are efficient machines in extract-
ing local features around words, but weak at deriving fea-
tures from sequential treatments because of their rigid struc-
ture. On the other hand, RNNs are effective at learning fea-
tures from sequential correlations, but unable to do it in a
parallel way (Zhou et al., 2015b). The two methods seem
complementary and in (Yin et al., 2017) the authors point
out that which architecture performs better depends on “how
important it is to understand the whole sequence”. Indeed,
they found that RNNs are not particularly well suited when
critical information has to be identified in a sentence to take
a classification decision. It includes identifying a particular
word to determine the topic or the sentiment of the sentence.
They also note that CNNs and GRUs are comparable when
sentences are small (<10), but GRU becomes better when
the sentences become longer. Finally, according to Baidu Re-
search DeepBench benchmark'®, CNNs are approximately 5x
faster to train than RNNs. The iterative nature of RNNs may
explain this result.

As it is not clear which one performs better, Zhou et al.,
2015b developed a model combining a convolutional layer
and an LSTM one. Their model has been able to outperform
both CNNs and LSTMs based models. Xiao and Cho (2016)

Dhttps://github.com/baidu-research/DeepBench#results The website
compares different hardware components for data science tasks including
training RNNs and CNNs.

also developed a hybrid model made out of a recurrent layer
(LSTM) and several convolutional layers. However, the input
of their model is not working at word level but at character
level. Their model has not been able to outperform either
simple CNNs or RNNs model on all common classification
benchmarks as their results were highly dependent on the
data set.

In this section, the classic methodology of solving text
classification problems using machine learning has been in-
troduced. Then, the main components of neural networks
namely the neurons, the parameters, activation functions and
output layer have been described. From there, an explana-
tion of the training procedure of neural network by initial-
ising the parameters and using a loss function to minimise
through a training algorithm has been provided. Finally, reg-
ularisation techniques to improve the generalisation power
of the neural networks were presented.

Building on the previous explanations, the functioning of
CNNs as powerful tools to learn local features thanks to a
convolutional layer and a pooling layer has been highlighted.
Also, the ability of RNNs to learn sequential features has been
explained, and a comparison of both models has been pro-
vided together with their most up-to-date applications.

The next section is dedicated to explaining how to convert
textual information in a format suitable to be fed in the neural
networks described.

3. Document Representation

“Translation is not original creation - that is what
one must remember. In translation, some loss is
inevitable” Joseph Brodsky

As computers work with binary information, they are not
able to directly interpret a human language. Consequently,
the second challenge of TC is to determine the best represen-
tation of the input for the classifier to extract the syntactic
structure and semantics of texts. Indeed, the effectiveness
of most classifiers is heavily dependent on the choice of the
representation of the data (Bengio et al., 2013; Wolfram and
Zhang, 2008). This task is often referred as learning repre-
sentation (or document indexing).

Several approaches have been developed and are based
on the idea that a document can be described based on a
set of the words contained in it commonly called the set-of-
words or the bag-of-words approach (Apté et al., 1994; Fuhr
etal., 1991; Lewis, 1992; Tzeras and Hartmann, 1993). Fur-
thermore, a word has been proved to be the best unit for text
representation (Song et al., 2005) despite promising recent
results of representations built at character level (Conneau
etal., 2016). However, not all words have the same represen-
tative value. Indeed, words such as “and” or “or” would not
provide the same information as “music” or “image” about
the topic of a document. A solution has therefore been to
develop a vector representation of the document where the
“importance” of each word is stored. Determining such im-
portance has been a highly investigated field of NLP and will
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be discussed in 3.1. In the past decade, various methods have
been approached and the currently predominant one is the
vector space model (VSM) introduced by Salton et al. (1975).

3.1. The vector space model

In the vector space model, documents are represented as
a vector where each dimension represents a separate term
(i.e., word), and weights are ranging between [0, 1]. O is
used to express the absence of a term in the document and
all value bigger aim to represent the importance of the word
in the document.

For D = {d,...,d,} a set of documents, we define L =
{L;...,1,,} being the dictionary (or lexicon), i.e., the set of all
different terms occurring in D. Then we define, a document
vector as d; = (wy;...,w,;) with wy; representing the weight
of the k" term in d;. Given the vector documents for two
documents, it is then possible to determine the similarity -
product of vector or inverse function of the angle between
the two vectors - between them (Salton et al., 1975). Also,
to give all the documents the same importance, each vector
document is normalized to have lengths of one.

Encoding the vectors, i.e., determine the weight w; of
a word [; in a document d; has been subjects to many dis-
cussions (Baeza-Yates and Ribeiro-Neto, 1999; Govert et al.,
1999), but a common approach has been to use the tfidf func-
tion introduced in (Salton & Buckley, 1988):

tf(d;, li)ZOg(,%

wi(d;, ;) =
V2 tf (s, 1)2(log(X))2

J2 1

With N being the number of documents in D, n, the num-
ber of documents in D that have an occurrence of 1 and
tf(d,l) the number of time | appears in d. With such a
method, deriving the similarity between two documents d;
and d, becomes handy has it can be represented by the Eu-
clidian distance between the two document vectors d; and
d,.

However, the drawback is the high dimensionality of the
representation. Indeed, for a set D of size N with M unique
words in L, the matrix representation is of size NxM whose
rows are words and columns are documents (Sanchez et al.,
2008). To overcome this issue, some pre-processing can be
done on the data which is discussed in the next paragraph.

3.2. Tokenization, filtering and stemming

As exposed before, the most common unit in text clas-
sification task is the word. Therefore for each document
d, a tokenization is required, i.e removing all punctuations
marks and replacing non-text characters by single white
spaces (Murty et al., 2011). It has been highlighted that by
representing the set of documents on a VSM, we end up with
a representation that has a high dimensionality. To reduce
it, the first method is to diminish the size of the lexicon L.
This can be done by filtering, i.e., removing words from the

lexicon. Frakes (1992) point out that words that appear re-
ally often bear no particular statistical relevance and can be
removed. Also, words such as prepositions or articles do not
have content information. In addition, stemming can be per-
formed on the data which consists of grouping words with
the same roots and replacing it with the most basic form or
stem. It is indeed assumed that words with a common stem
will usually have similar meanings (Porter, 1980). There-
fore plural forms from nouns or the “ing” from verbs will
be removed and the dictionary will contain a list of unique
stems.

3.3. Distributed representation of words

Although pre-processing techniques have been able to
reduce the dimensionality of the document representation
efficiently, the modelling presented earlier has other draw-
backs. They include not being able to represent the dis-
tance between individuals terms (Kusner et al., 2015) that
means it does not capture sense about the semantics of the
words. Also, the high dimensionality is often not suitable for
computing document distance as they produce matrixes that
are almost orthogonal (also called diagonal dominance'®)
(Greene and Cunningham, 2006). Finally, word order is dis-
regarded when constructing such a representation. Some
studies have been trying to solve this issue producing a more
coherent approach, yet without improving the performance
of the downstream classification task. (Blei et al., 2003;
Deerwester et al., 1990; Robertson and Walker, 1994).

A breakthrough in document representation occurred
when researchers leveraged the distributional hypothesis
that states that words that are used and occur in the same
contexts tend to purport similar meanings (Harris, 1981).
Additionally, the pioneering work of Hinton et al. (1986) on
distributed representations contributed to improvement of
document representation: rather than representing a word
with a single high dimensionality vector, it can be repre-
sented as a combination of low dimensional vectors. Each
vector is used to represent a feature (such as the tfidf of a
word, Chi-Squared, Information Gain (Debole and Sebas-
tiani, 2003)) and the number of features is smaller than the
size of the lexicon (reducing thus the dimensionality). Also,
relevant features can be selected from a set of all the features
(feature selection) and used for the representation. Alterna-
tively, a machine learning approach can be implemented to
pick and transform the features (feature extraction) into a
lower dimension. This distributed representation of a word
is called word embedding. A word is thus represented as a
word vector with each dimension representing a feature.

Formally, for each word 1 in L, a set of linguistic features
[e;...e;] is extracted or constructed. Each e; is encoded in
a vector v(e;). 1 is then represented by a combination of
each vector (summation, concatenation or both). The model
is therefore made out of dense and low-dimensional vectors

16 A square matrix A is called diagonally dominant if |A;;| > Zi# |A;;] for
alli.
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Figure 13: Feature filter model; Source: (John et al., 1994)
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Figure 14: Feature wrapper model; Source: (John et al., 1994)

which lowers the dimension of the representation of the doc-
ument significantly. These vectors are usually the input of
the classifier mentioned in paragraph 2.2.1.

3.4. Feature selection

In the previous section, the notion of feature for words
has been introduced. A plethora a features exists concern-
ing words and to generate the representation of a document,
some criteria can be used to filter out if a feature is relevant'’
for prediction purpose or not. Feature selections methods are
categorized in three different types: filter, wrapper, and em-
bedded methods.

3.4.1. Filter

Filter method (illustration of process in Figure 13) refers
to algorithms that treat a possible set of features and rank
them independently of the classifier. The top-ranked features
are selected (Forman, 2003). Examples of such algorithm
include some built on similarity measures such as Pearson’s
correlation coefficient (Saeys et al., 2008), statistical meth-
ods and heuristic search or ensemble learning (Kira and Ren-
dell, 1992) . These methods have the advantage of being
fast and thus scalable. However, they do not yield particu-
larly accurate results as they increase bias and are exposed
to the selection of redundant features (Jashki et al., 2009).

3.4.2. Wrapper

Wrapper methods (illustration of the process in Figure
14), on the other hand, test every feature in the context of
the classifier (Kohavi and John, 1997). They usually involve
automated search techniques such as the greedy search strat-
egy (Guyon and Elisseeff, 2003). These methods are more
accurate than filter methods but come with high-computing
costs.

17Discussions about the meaning of relevance and its definition can be
found in (Sag et al., 2002)

3.4.3. Embedded

Finally, embedded methods perform feature selection
during the execution of the classifier (being therefore em-
bedded in the classifier). Therefore, the feature selection
and the training methods of the classifier are not separated
steps. Conventional methods may use decision three algo-
rithm (Genuer et al., 2010) or multinomial logistic regression
(Cawley et al., 2007). These methods are similar to wrappers
but are specific to classifiers, which makes them computa-
tionally less expensive as they are optimized for them.

3.5. Feature extraction

As mentioned, a board range of features exists and some
that humans find useful will not necessarily be useful for the
models and vice-versa. Therefore, all the features known
based on basic statistics about a document can be used, re-
ferred as count based methods. Alternatively, machine learn-
ing techniques such as neural networks can be used to let the
model determine which features are important or not.

3.5.1. Count based methods

In feature extraction, the feature space - set of all pos-
sible features - is converted to another space with a lower
dimension keeping the most informative and discriminative
features (Gomez et al., 2012). Methods include Principal
Components Analysis (PCA) and Latent Semantic Analysis
(LSA).

PCA is a statistical method that transforms the set of fea-
tures (possibly correlated) into new features that are uncor-
related called principal components using a linear transfor-
mation. Like in feature selection, the best new features are
then selected.

LSA (Deerwester et al., 1990) - also referred as Latent
Semantic Indexing - is a technique developed to address
the problems deriving from the use of synonymous, near-
synonymous, and polysemous words as features of document
representations (Sebastiani, 2002). The process involves
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identifying the relevant words - using, for example, the tfidf
of words - and then constructs a term-document matrix as
described in paragraph 3.1 . Then the matrix is decomposed
using Singular Value Decomposition - a technique closely
related to PCA. The result is a set of lower dimension fea-
tures vectors that were constructed looking at patterns of
word usage in the documents. In essence, the features are
usually hardly interpretable as there are meant to capture
latent (hidden) relationship between words. LSA provided
a significant step forward in document representation as it
accounted for semantic characteristics of texts, synonymy of
words and partially polysemy (Deerwester et al., 1990).

Glove: the state-of-the-art of count-based model

In the paper introduced by Pennington et al. (2014), the au-
thors argue that the count of words in a document carries
meaningful information, but also the count of a word w; in
the context of another word w; called co-occurrence proba-
bility. Following their example, for the context of steam and
ice, it is expected that the ratio of the probability of observ-
ing solid in the context of ice and the probability of observ-
ing solid in the context of steam - }% - to be high.
Likewise, this ratio for the word gas in the same contexts is
expected to be small. The model therefore constructs a ma-
trix X;; based on word-context co-occurrences and factorise
it to obtain the vectors. To complete the latter step, the au-
thors use a weighted least squares regression model that is
able to encode the information available in the probability of
co-occurrence. When constructing the word vectors, the ob-
jective is to minimize the difference between the product of
the two word vectors w; and w ; (word and context), and the
logarithm of the probability of co-occurrence (plus a bias for
each word) which is expressed as follow:

%
J = Z fOX )W W, +b; + b; —log (X))
ij=1
X
' (S)¥% if X, <X
withf (X:.) = xmax ij max
) {1 otherwise

3.5.2. Neural networks for words embedding

Methods to represent words explained so far are referred
as count-based methods in (Baroni et al., 2014) as values in
vectors are derived from co-occurrence counts. The authors
point out the weaknesses of these models namely problem
of scalability, poor performance on word analogy evaluation
and task-dependent (except for GloVe that performed pretty
well on the latter). To deal with these issues, new models
have appeared referred as predictive-based methods. This
new generation of models where first exposed in 1981 (Hin-
ton et al., 1986), but have demonstrated their utility in (Col-
lobert and Weston, 2008) building up on previous research
on deep neural network (Bengio et al., 2003) challenging
the previous state-of-the-art methods. Rather than count-
ing words co-occurrence, generating the vectors and reduc-

ing the dimensionality, these methods try to directly gener-
ate the vectors by predicting a word from its neighbours or
vice versa. Thus, as similar words occur in similar contexts,
the system assigns similar vectors to similar words (Baroni
et al.,, 2014). The comparisons between count-based and
predictive-based methods have demonstrated the superior-
ity of the latter in lexical semantics tasks including semantic
relatedness, synonym detection and analogy, (Cambria et al.,
2017; Socher et al., 2011; Turney and Pantel, 2010; Weston
et al., 2010), but have failed to leverage statistical informa-
tion from documents as they are based on context windows
of a few words. It must however be pointed out that no meth-
ods of adequately evaluating the quality of vector represen-
tations have been developed. Indeed, so far they have been
evaluated on word similarity or analogy metrics, but these
only correlate weakly with downstream tasks performance
such as TC (Tsvetkov et al., 2015).

The next section is dedicated to presenting the most fa-
mous predictive-based methods using neural networks.
Word2Vec
In the paper (Mikolov et al., 2013), the authors offer two
models. One model predicts a word given a context (Contin-
uous Bag-of-Words model) and the other one given a context,
predicts a word (Skip-gram model). Using these models with
such objectives will not result in word vectors per se in the
output layer. Indeed, the word vectors will be present in the
different weight matrices of the models. The intuition be-
hind it was previously expressed: if two words are similar,
they should appear in a similar context and thus their repre-
sentation should be similar.

The results of the learned embedding were a big step for-
ward in the vector representation of words. Indeed, they
were not only capable of training a huge list of words (1.6 bil-
lion) in less than one day, but also captured semantic mean-
ing of words. It is illustrated by an example that has become
famous in the NLP community: having the vector for the
words queen, women, men and king, they have performed
the following calculation successfully:

queen —women + men = king

In the same vein, they were capable of capturing the seman-
tic behind the sentence “France is to Paris as Germany is to
Berlin”.
Continuous Bag-of-Words model

To achieve this amazing result, they leverage a modification
of the MLP presented in 2.2 as pictured in Figure 15. They
used the same structure with an input layer that represents
one-hot-encoded'® words, a single hidden layer and an out-
put layer with the goal to classify. They looked at four words
and given these words try to find a word that would fit in the
middle of these four words which can be defined as a classi-
fication problem. With this architecture, they therefore end

187 one-hot-encoded vector consists of Os in each dimension with the ex-
ception of a 1 in a dimension used uniquely to identify the word by its posi-
tion in the sentence.
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Figure 15: x;,x,, x5 is the input layer made out of one-hot-encoded vectors. The hidden layer is represented by neurons
and the output layer is y;, y,, y3. This representation would fit a sentence made out of three words. Source: Author’s own

representation

up with two weights matrices W' (from the input layer to
hidden layer) and W2 (from the hidden layer to the output
layer) that form the parameters 8. The output layer, thanks
to a softmax function, represents a multinomial distribution
of all words given a context'’. We understand that the goal is
to maximize the probability of a word given a context, which
consists of minimizing the opposite probability:

Lossfunction = —log(p(word|words,ontext))

The log appears because we are using the softmax func-
tion to transform the last layer in a probability distribution.

With this setting, the actual output of interest are the ma-
trices W! and W2, Indeed, after training, the matrix W' con-
tains in its lines vectors that, for a word, represents the con-
text. On the other hand, W2 has a vector representation of a
word in its columns, which is precisely what we are looking
for (Rong, 2014).

Skip-Gram model
The Skip-Gram model is very similar to the CBOW model.
It is just doing the opposite: given a word, predict the con-
text. Indeed, for a word given, it will pick another word and
estimate the probability of that word being around”’ it. Con-
sequently, the rows of W will now represent the vector rep-
resentation for a word and the column of W2 will represent
context vectors.

From the two models, the authors have been able to cre-
ate vectors that were capable of representing words better

19The context can be made out of one word or several words preceding or
following the word of interest

20“around” is predefined and can be for instance 2 words before and 2
words after. The authors of the model found that increasing the size of the
context resulted in better quality of word vectors.

syntactically (with the CBOW model) and semantically (with
the Skip-gram model) than previous neural models (Mikolov
et al., 2009; Mikolov et al., 2010). However, the models have
limitations. The first one is that for one word, they assign
one vector and therefore they are unable to represent poly-
semy words. To (partially) solve the issue, Upadhyay et al.
(2017) developed an algorithm that learns word representa-
tion jointly across language. The intuition behind it is that a
polysemy word in language could be translated into distinc-
tive words in another language. Using the authors’ example,
the word bank in English which has several meanings can be
translated to banque or banc in French which capture two
different meanings with two different words. Therefore, by
learning using multiple languages, the algorithm can iden-
tify which sense to use. The second caveat is that the mean-
ing of multi-word expressions®! is not captured. Indeed, ex-
pressions such as “in short” or “Los Angeles” are poorly en-
coded as they will be represented in two vectors. Some meth-
ods have been developed to capture phrasemes without how-
ever improving the performance of downstream tasks such as
text classifications (Hashimoto and Tsuruoka, 2016; Yu and
Dredze, 2015). Finally, training the CBOW or Skip-gram is
computationally expensive on large datasets. Thus, rather
than generating an embedding for every task performed, it is
common practice to use pre-trained vectors?”. However, it is
often the case that some words in the datasets are not part
of the pre-trained vectors. These words are referred in the
literature as out-of-vocabulary words (OOV). Being able to
assign a proper representation to the input, including OOV

2IMultiword expressions are also called phraseme. An accurate discussion
about the typology of multiword expression is present in (Sag et al., 2002)

22Mikolov et al., after developing their model, published a set of pre-
trained vectors on Google News with 3 million words and phrases.
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words, can alter the performance of the downstream task by
up to 6% over random initialization (Dhingra et al., 2017).
One way of dealing with OOV words is to replace them with
a unique token, UNK (Chen et al., 2016; Shen et al., 2017),
and use it for training. Another method is to assign each OOV
word a randomly generated vector at test time (Kim, 2014) or
a unique randomly generated vector (Dhingra et al., 2017).
A recently suggested method in (Dong and Huang, 2018) is
to combine pre-trained vectors and vectors generated during
training. When a word is present in the pre-trained vectors
and the training set, then a new vector is constructed concate-
nating both vectors. If one of them is missing, it is replaced
by a null vector.

Proposal
I would like to propose a variation of the method developed
in (Dong and Huang, 2018). Rather than pre-trained or em-
bedded vectors concatenating with a null one, I suggest to
concatenate them with a unique vector sampled from a distri-
bution such as the vector has the same variance as the other
ones. The idea of generating vectors from such a distribu-
tion is not new as it was already expressed in (Kim, 2014).
However, I combine both approaches with a concatenation
operation as shown in Figure 16.
FastText
As expressed earlier, training word vectors can be com-
putably expensive to learn and dealing with OOV words can
be challenging. Bojanowski et al. (2016) offer an extension
of Word2Vec named FastText to learn a vector representa-
tion of word quickly and to (partially) deal with OOV words.
Rather than learning vector representation of words, they
learn representations of character n-grams. Then a word is
simply the sum of this character n-gram®®. For instance, for
the word “hello” , extracting a character 3-gram, will give
the vector representations of: “he”, “hel”,”ell”,”ll0”,”10”. This
allows leveraging the morphology of words and therefore
reducing the number of necessary computations. Also, when
dealing with OOV words, it is likely that new words can be
expressed as a combination of the learned character n-gram.

While Section 1 described various neural networks mod-
els, Section 2 of this work has been first dedicated to ex-
plaining the rationale behind the conversion of words into
vectors as inputs for the models. From the simple bag-of-
words method that uses a high dimensional representation,
the notion of feature and tricks to diminish the size of that
representation have been introduced. Furthermore, methods
to select features but also techniques that extract them were
explained. For the latter, the dichotomy that exists between
count-based solutions - with its best representative GloVe -
and prediction-based solutions such as Word2Vec and Fast-
Text has been presented. Finally, a solution to deal with
words that are not present in pre-trained vectors data set has
been proposed.

As the state-of-the-art of neural networks models for TC
and word embedding methods have been identified, the next

23In their study, they extract all the n-gram with n ranging from 3 to 6.

section describes the benchmark used to evaluate them on
the LogMeln data. Also I introduce another dataset to assess
the proposal.

4. Experiment

“Experience is simply the name we give our mis-
takes” Oscar Wilde

To evaluate the state-of-the-art classifiers on the data pro-
vided by LogMeln, the CNN model as described in (Kim,
2014) and a hybrid CNN+LSTM model as described in (Zhou
et al., 2015b) were implemented. Also, in order to evaluate
the proposal, the implementation was tested on two datasets:
the LogMeln one and the TREC (Li and Roth, 2006) dataset.

Moreover, I test different techniques of embedding, a
random initialization with different dimensions, using pre-
trained vectors generated by Word2Vec (Mikolov et al.,
2013), GloVe (Pennington et al., 2014), FastText (Bojanowski
et al., 2016), FastText with subwords information (Mikolov
et al., 2017), the method introduced in (Dong and Huang,
2018) and my proposal.

4.1. Data

The LogMeln dataset is made out of customer reviews
based on the product GoToMeeting - an online meeting and
video conferencing software. It has been annotated such as
reviews are classified under the categories “screen”, “video”,
or “audio”. Unfortunately, reviews may appear in several cat-
egories in the original dataset. Therefore the dataset is used
for a binary classification problem whether the review is un-
der the category “audio” or not. Also, to avoid bias, an under-
sampling procedure has been performed on the “non-audio”
category to get a 1:1 ratio of “audio” and “non-audio” entries.
It consisted of randomly dropping data points until parity was
reached.

The TRAC dataset is a common benchmark used for
multi-topic categorisation. It is made out of a question
that refers to a person (884 samples), a location (616),
numeric information (664), an abbreviation (62), and an
entity (937). The task is to classify a question under one of
these categories. Statistics for both datasets are available in
Table 3.

4.2. Models

The CNN is the same as described in Section 2.3. As ex-
plained, a CNN takes a fixed length of input; therefore each
sentence is padded to the maximum sample length. It is done
by adding symbols for sentences that are shorter than the
maximum sentence length in the training set and taking off
words for samples that are longer in the test set. The window
sizes of the filters of the convolutional layer are 3, 4 and 5
words with 100 feature maps each which are combined with
a ReLu non-linearity. A 1-max pooling operation is performed
on the output of the filters and then a 0.5 dropout is applied.
The batch size is 32 and the loss function is the softmax cross
entropy function shown below:
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Algorithm : Combine pre-trained word embedding with those generated on training set.

Input

: Pre-trained word embedding set {U,,|w € S} where U,, € R% is embedding vector for

word w. Word embedding {V,,|w € T} are generated on training set where V,, € R%, P
is a set of word vocabulary on the task dataset. a such as U[a; a] has the same variance
as the vectors in {V,,|w € T'}. b such as U[b; b] has the same variance as the vectors in

{Usw] w € S}

Qutput: A dictionary with word embedding vectors of dimension dy + dy for (SN P)UT.

res = diet()
for we (SNP)UT do

if we SNPandw € T thenres[w] = [Uy; Vals
elseif w € SN Pandw ¢ T then V,,~ Ula;a] and res[w]| = [Uy;: V,];

else U,,~ U[b; b] and res[w] = [Uy; Vi ;
end
Return res

Figure 16: Algorithm suggested to deal with OVV word, using the same notation as in (Dong and Huang, 2018); Source:

Author’s own representation

Table 3: Statistics about LogMeln and TREC datasets Source: Data compiled by author

LogMeln  TREC
Total Samples 1137 4000
Train Samples 1023 3600
Test Samples 114 400
Number of categories 2 6
Average length of samples 16.975 10.1545
Median length of samples 10 10
Maximum length of samples 205 37
Total unique words 2786 6987

eC

C
i=1¢

L(¢,c)=—-log(

¢

The CNN+LSTM model is first made out of convolutional
layer that extracts higher-level sequences of word features.
It is the same convolutional layer as the simple CNN model.
Unlike in (Zhou et al., 2015a) a 1-max pooling operation is
kept after the convolutional layer. Then an LSTM capture
long-term dependencies over each window feature created
by the convolutional layer. After the LSTM, a 0.5 dropout is
applied just before the softmax cross entropy layer. The batch
size is also 32.

4.3. Word embedding

I test 8 forms of word embedding. First, I try two random
assignations of vectors to words from the uniform distribu-
tion U[-0.25,0.25]. The first set of vectors is of dimension
300 and the second of dimension 600. This is to check the
effect of the size of word embedding on the downstream clas-
sification task.

Also, a third embedding is generated from pre-trained
vectors with Word2Vec made available by Mikolov et al.
(2013). It includes a vocabulary of 3 million words and
phrases that were trained on about 100 billion words from a
Google News dataset. The vectors are of dimension 300.

The fourth embedding is generated from pre-trained vec-
tors with GloVe made available by Pennington et al. (2014).
They were trained on a Wikipedia and Giga word datasets**
and consist of 400’000 words. The vectors are of dimension
300.

The fifth and sixth embedding are generated from pre-
trained vectors with FastText (Bojanowski et al., 2016;
Mikolov et al., 2017). They consist of 1 million word vec-
tors trained on Wikipedia 2017%°, UMBC web base corpus®
and statmt.org news dataset?’. One is trained with subword
information the other is not.

The sixth embedding method is the proposal of Dong and
Huang (2018) which consists of vectors of dimension 600
made out of the concatenation of Word2vec pre-trained vec-
tors and vectors trained directly on the database with the
CBOW algorithm. If a word is not present in either of the
two sources it is represented by a null vector of size 300. Fi-
nally, the last embedding is my proposal. It is the same as the
sixth except that vectors that are not found are represented
by a unique vector initialized from a uniform distribution U[ -
0.25,0.25] of size 300.

The code was written in Python using TensorFlow”® and

24https://catalog.ldc.upenn.edu/LDC2012T21

25http:/ /wiki.dbpedia.org/Datasets
26https://ebiquity.umbc.edu/resource/html/id/351

27http: / /www.statmt.org/
28https://github.com/tensorflow/tensorflow/releases/tag/v1.8.0
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the code of Jie Zhang available on GitHub?’ as a basis for the
implementation of the CNN and CNN+LSTM. Also, the gen-
sim®° implementation of Word2Vec is used to generate the
word embedding of the TREC and LogMeln dataset. The code
is available in Appendix 8.1, Appendix 8.2, and Appendix
8.3. Finally, the tests were performed on a Central Processor
Unit (CPU) Intel (r) Core ™ i7-7500U @ 2.70 GHz and 8GB
LPDDR3-1866Mhz RAM. As some randomness is part of each
model, they are tested 5 times. The average performance as
well as a 95% confidence interval is reported. The 16 mod-
els, their name, and characteristics are summarized in Table
4.

5. Results and Discussion

“I am just a child who has never grown up. I
still keep asking these ‘how’ and ‘why’ questions.
Occasionally, I find an answer” Stephen Hawking

The first part of this section presents the results necessary
to compare the effectiveness of the CNN and the CNN+LSTM
models. Then, the effects of the different word embedding
methods are presented and discussed.

5.1. CNN and CNN+LSTM

A first remark is that I was not able to achieve the same
results as (Kim, 2014) and (Zhou et al., 2015a) on the TREC
dataset. As pointed out in Wang et al., 2018), measures
can change depending on the pre-processing of the data. In
my experiment, short forms such as “I'm” or “He’ll” are split
in two distinctive words, uppercase characters are replaced
by lowercase ones and non-alphanumeric characters except
punctuation symbols were removed. Also, I do not use the
same hyperparameters and architecture. Indeed, when Kim
use ADADELTA (Zeiler, 2012) as the algorithm to update gra-
dients, I use ADAM (Kingma and Ba, 2015). Indeed, it was
shown in the aforementioned paper that both methods ef-
ficiently lower the cost of training on CNNs, but ADAM is
better at that task than ADADELTA, especially on deep neu-
ral networks. However, despite being more efficient, ADAM
and ADADELTA should converge toward the same local min-
imum which should therefore not change the performance
of the downstream task. Tests with an ADADELTA function
have been performed on the TREC dataset and the CNNFXT
model and no significant changes were perceived confirm-
ing the previous statement. Also, Kim uses 25 training cycle
(or epochs) whereas on my benchmark I only use 3. The
more epoch is used, the better trained the model is, however
the higher the risk of overfitting. I have personally chosen 3
epochs to run more tests in the benchmark. Indeed, multi-
plying the amount of epochs inevitably increases the training
time of each model. However, after testing on the CNNW2V

2%https://github.com/jiegzhan
3Ohttps://radimrehurek.com/gensim/

model on the TREC dataset with 25 epochs, again no signif-
icant differences were observed as it appears that the model
plateaus at about 84% accuracy. Despite these differences, I
have not been able to identify other sources responsible for
the performances differences.

Similarly, the results of the CNN+LSTM models do not
replicate the ones from C. Zhou et al. The first difference is
the presence of the max pooling layer after the convolutional
layer. The authors argue that the operation breaks the se-
quence order as the selected features from the convolutional
layer are discontinuous. However, the role of the max-pool
is first reducing the computation for the next layer, but also
to extract the most salient features in the sample. A test has
been performed on the LSTMW2V model, but again no sig-
nificant changes in term of performance have been observed.

The number of epochs, however, affects much more the
LSTM models. Indeed, the results reported in Table 5 come
from a training procedure of 3 epochs, but by increasing it to
25, the accuracy for the model LSTMW2V jumped from 63%
and 77% to 86% and 97% on TREC and LogMeln datasets
respectively”’. To investigate it, I changed the gradient up-
dating algorithm of the CNN+LSTM models. In their initial
configuration (and the one tested in this work), the algorithm
used for the update of the gradient of the CNN+LSTM mod-
els is the RMSprop (Tieleman and Hinton, 2012). A test has
been performed using the ADAM algorithm with 3 epochs
on both datasets and results are conclusive achieving similar
results than with the RMSprop with 25 epochs. Therefore,
the first recommendation when using a CNN+LSTM model
is to use the ADAM algorithm as gradient update function. It
requires less training time while yielding better results than
RMSprop for the same number of epochs.

In the lights of the first conclusion, a second benchmark
has been performed using a CNN+LSTM with an ADAM gra-
dient update function and 3 epochs to compare the model di-
rectly with the simple CNN models. The results are reported
in Table 6.

Besides, for both configurations, I use filter sizes of 3, 4
and 5 on the convolutional layer. In their original paper, C.
Zhou et al. conclude that a filter of size 3 yields better re-
sults for the CNN+LSTM architecture. However, Kim reports
better results using filter size of 3, 4, 5 on a simple CNN one.
I find better results using filter size of 3, 4 and 5 on both
datasets with both configurations. As few data were collected
(5 per model), to investigate differences between CNN and
CNN+LSTM, I aggregate the measures of all CNN tests and
all CNN+LSTM tests. The mean and a 95% confidence inter-
val are reported in Table 7.

There are no statistical differences observed between the
two models on the dataset experimented. The CNN results
are similar in magnitude to the results in (Zhou et al., 2016b)
on the TRAC dataset, but no improvement is observed by
adding the LSTM layer to the architecture unlike in (Zhou
et al., 2015a). First, a better fine-tuning of the CNN+LSTM

31These figures might be inflated as I did not check whether an overfitting
problem was appearing or not.
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Table 4: Summary of the different model tested and their features; Source: Data compiled by author

Name Model Dimension Embedding
CNN300 CNN 300 Random
CNN600 CNN 600 Random
CNNW2V CNN 300 Pre-trained Word2Vec (Mikolov et al., 2013)
CNNGVE CNN 300 Pre-trained GloVe (Pennington et al., 2014)
CNNFXT CNN 300 Pre-trained FastText (Bojanowski et al., 2016)
CNNFXT SUB CNN 300 Pre-trained FastText (Mikolov et al., 2017)
CNNW2V600 NULL CNN 600 Word2Vec + pre-training on dataset (Dong and Huang, 2018)
CNNW2V600 CNN 600 Pre-trained Word2Vec + pre-training on dataset (proposal)
LSTM300 CNN+LSTM 300 Random
LSTM600 CNN+LSTM 600 Random
LSTMW2V CNN+LSTM 300 Pre-trained Word2Vec (Mikolov et al., 2013)
LSTMGVE CNN+LSTM 300 Pre-trained GloVe (Pennington et al., 2014)
LSTMFXT CNN+LSTM 300 Pre-trained FastText (Bojanowski et al., 2016)
LSTMFXT SUB CNN+LSTM 300 Pre-trained FastText (Mikolov et al., 2017)
LSTMW2V600 NULL CNN+LSTM 600 Pre-trained Word2Vec + pre-training on dataset (Dong and Huang, 2018)
LSTMW2V600 CNN+LSTM 600 Pre-trained Word2Vec + pre-training on dataset (proposal)

Table 5: Classification accuracy of the different models on the LogMeln and TREC datasets. The best result is in bold; the
second best is in italic. The 95% confidence interval is reported in parentheses. Here the CNN+LSTM models are trained with
RMSprop; Source: Data compiled by author

LogMeln TREC
CNN300 0.9035 (£ 0.0241) 0.7765 (£ 0.0169)
CNN600 0.8614 (£ 0.0190) 0.7810 (£ 0.0107)
CNNW2V 0.9333 (£ 0.0253) 0.8425 (+ 0.0831)
CNNGVE 0.9123 (£ 0.0108) 0.7730 (£ 0.0162)
CNNFXT 0.9386 (+ 0.0139)  0.8455 (+ 0.0161)
CNNFXT_SUB 0.9193 (£ 0.0385) 0.8300 (£ 0.0121)

CNNW2V600 NULL

0.9351 (+ 0.0268)

0.8445 (£ 0.0176)

CNNW2V600 0.9273 (£ 0.0268) 0.8165 (£ 0.0099)
LSTM300 0.6069 (£ 0.0478) 0.7000 (+ 0.0438)
LSTM600 0.5825 (£ 0.0321) 0.7005 (+ 0.0231)
LSTMW2V 0.6316 (£ 0.0311) 0.7745 (+ 0.0348)
LSTMGVE 0.7175 (£ 0.0419) 0.7380 (+ 0.0185)
LSTMFXT 0.6070 (£ 0.0575) 0.7550 (£ 0.0360)

LSTMFXT_SUB

LSTMW2V600_NULL

LSTMW2V600

0.5316 (£ 0.0476)
0.6386 (£ 0.0228)
0.5912 (£ 0.0275)

0.6835 (£ 0.0176)
0.7845 (£ 0.0127)
0.7535 (£ 0.0261)

model is necessary. As pointed out in the previous paragraph,
LSTM based model are very sensitive to the number of epochs
and update algorithm function. Further investigations must
be performed on the CNN+LSTM model to identify the right
number of epochs, but also the ideal batch size. Indeed, a
test has been conducted with the LSTMW2V model with 6
epochs showing an accuracy of 84.25% on TREC, which is
higher than all other tests (Appendix 8.4).

In both models, the convolutional layer performs the
same task which explains the similarity of results, but the
addition of the LSTM layer requires further work to leverage
the memory cell capacity. Also, as pointed out in (Yin et al.,
2017), CNNs and RNNs are expected to yield comparable
results when sentences are short which is the case as shown

in Table 3. Finally, both algorithms perform better on Log-
Meln than TREC, but tasks are also slightly different as one
is a binary classification and the other one is a 6 categories
classification task.

5.2. Effect of Word Embedding

Despite not being able to replicate other state-of-the-art
results, effects regarding the word embedding are captured
by both models by holding the rest of the parameters con-
stant. To capture only the effect of the word embedding
method, an aggregation has been made between results of
CNN and CNN+LSTM based models. Results on the LogMeIn
dataset is present in Figure 17 and results on TREC are avail-
able in Figure 18.
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Table 6: Classification accuracy of the different models on the LogMeln and TREC datasets. The best result is in bold; the
second best is in italic. The 95% confidence interval is reported in parentheses. Here the CNN+LSTM models are trained with

ADAM; Source: Data compiled by author

LogMeln

TREC

CNN300
CNN600
CNNW2V
CNNGVE
CNNFXT
CNNFXT_SUB
CNNW2V600 NULL
CNNW2V600
LSTM300
LSTM600
LSTMW2V
LSTMGVE
LSTMFXT
LSTMFXT_SUB

LSTMW2V600_NULL

LSTMW2V600

0.9035 (£ 0.0241)
0.8614 (£ 0.0190)
0.9333 (£ 0.0253)
0.9123 (£ 0.0108)
0.9386 (£ 0.0139)
0.9193 (£ 0.0385)
0.9351 (£ 0.0268)
0.9273 (£ 0.0268)
0.87016 (£ 0.0331)
0.89474 (+ 0.0300)
0.8895 (£ 0.0083)
0.91924 (£ 0.0162)
0.90596 (£ 0.0162)
0.91756 (+ 0.0122)
0.91754 (£ 0.0176)
0.91404 (£ 0.0100)

0.7765 (£ 0.0169)
0.7810 (£ 0.0107)
0.8425 (+ 0.0831)
0.7730 (£ 0.0162)
0.8455 (£ 0.0161)
0.8300 (£ 0.0121)
0.8445 (£ 0.0176)
0.8165 (£ 0.0099)
0.7855 (£ 0.0201)
0.7895 (£ 0.0082)
0.835 (£ 0.0271)
0.816 (£ 0.0141)
0.8365 (+ 0.0180)
0.8145 (£ 0.233)
0.825 (£ 0.0258)
0.833 (£ 0.0220)

Table 7: Results of CNN and CNN+LSTM based models; Source: Data compiled by author

Models LogMeln

TREC

CNN 0.916348 (£ 0.0116) 0.813688 (+ 0.0116)

CNN+LSTM  0.90359 (£ 0.0119)

First, it can be observed that, as expected, the effects of
the word embedding method are dependent on the dataset.
Indeed, as results are not necessarily conclusive on the Log-
Meln data, they are on the TREC one. Here I assume two
effects must be taken into account. First, the larger the size
of the vocabulary (i.e., total unique words in Table 3), the
higher the model can leverage pre-trained vectors for similar
ratios of words found/total words. Also, the higher the noise
in the dataset, the higher will be the variance in performance
of the downstream model.

Furthermore, looking in Table 6, it is also striking that the
improvement in accuracy induced by the use of pre-trained
vectors is dependent on the downstream model used to tackle
the classification task. Indeed, compared to a random initial-
ization, using the pre-trained FastText vectors can improve
the accuracy by up to 10.2% using a CNN and 8.9% using
a CNN+LSTM. Also, the impact is even greater if the subse-
quent model is not ideally trained. Indeed, in Table 5, from
a random initialization of dimension 300 to the use of Dong
& Huang the accuracy is potentially jumping from 65.62% to
79.72%, a 14.1% gain. The figures found are higher than the
ones that in (Dhingra et al., 2017). As pre-trained vectors al-
ready carry information when fuelled to the subsequent clas-
sification model, they enhance the performance of the classi-
fier. However, the nature of the gain, whether linear or not,
has not, as far as I know, been investigated. It could be in-
vestigated by studying the relation between the number of
epochs and the relative gains by using pre-trained vectors.

0.816875 (£ 0.0094)

My hypothesis is that the marginal gain of using pre-trained
vectors is diminishing as the number of epochs increases.

Second, simply doubling the dimension of the word em-
bedding does not change the performance of the classifica-
tion task with random initialization. However, doubling the
dimension, allows reducing the variance of downstream re-
sults as observed in Figure 18.

Third, using pre-trained vectors yields indeed better re-
sults over random initialization which can be observed on
the TREC results as well. As the matter of fact, except for
GloVe pre-trained vectors, all embedding methods give bet-
ter results than random initialization.

Fourth, using subword information from the pre-trained
vectors of FastText does not improve either the perfor-
mance. Further investigations using an architecture that
uses character-level information such as in (Xiao and Cho,
2016; Zhang et al., 2015) should be performed to investigate
whether these models can leverage these subword features
better. In addition, it can be observed that methods lever-
aging the CBOW algorithm such as Word2Vec and FastText
outperform GloVe. Looking at a 2D projections of the TREC
vocabulary generated from FastTtext pre-trained vectors us-
ing t-distributed stochastic neighbour embedding (T-SNE*?)

32A technique used to reduce the dimensionality of the vectors while keep-
ing some features. The implementation has been done using the sckit-
learn library (http://scikit-learn.org/stable/index.html) and matplotlib
(https://matplotlib.org/)
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Figure 17: 95% Confidence intervals of the results of the models on the LogMeln dataset; Source: Author’s own representation
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Figure 18: 95% Confidence intervals of the results of the models on the TREC dataset; Source: Author’s own representation

in Figure 19, we can observe that FastText vectors are bet-
ter at capturing semantic information as words with similar
meanings are clustered. However looking at the GloVe pro-
jections in Figure 20, we observe that fewer clusters appear
and that the projection is similar to a random initialization
with however increased variance. As a consequence, this
variance also spills over the variance of performance of the
models.

Finally, my proposal does not show a statistical difference
with Dong & Huang’s algorithm. As shown in Table 8, the
number of out-of-vocabulary words is relatively low and the
effectiveness of both methods is therefore hard to evaluate
as a few information is added by the algorithm.

Further tests on different datasets with a greater num-
ber of OOV words should be performed. Indeed, words
whose initialization is not random due to pre-training on the

” o«

dataset include “gotomeeting”, “gotowebinar” or “seminario”
which do not help much on determining whether the review
is audio or not (low representative value). Likewise, on
the TREC dataset these words include “spielberg”, “mozam-
bique”, “gould”. In TREC dataset, totally missing words
include numbers such as “1991”, “1967” or “327”, or words
such as 'occamy’, 'rockettes’, ’quetzalcoatl’, ’khrushchev’, On
the LogMeln dataset missing words also includes numbers
such as “995” or “65”, misspelled words such as “’presen-
tationbefore” or ’probleme’, and words in another language
such as “perfekt”, “einfache” or “reiniciar’. A suggestion to
improve the performance on the LogMeln dataset is to use a
combination of pre-trained vectors from different language
as the dataset includes samples in another language than

English.



58 E. Vilar / Junior Management Science 4(1) (2019) 35-62

il
@hould

@ goug N

-40 -20 [ 20

gentury

gninutes

dimes.

Figure 19: T-SNE projection of FastText pre-trained vectors for the TREC vocabulary. Two clusters are shown; one presenting
words about time (bottom) and the other one with modal verbs (top); Source: Author’s own representation

Figure 20: TT-SNE projection of word vectors for the TREC vocabulary. On the left vectors from GloVe. On the right random
initialization of dimension 300; Source: Author’s own representation

Table 8: Descriptive statistics about the words found using different embedding methods; Source: Data compiled by author

LogMeIn TREC

Total unique words 2786 6987
Found in Word2Vec 2504 6036
Found in Glove 2575 6814
Found in FastText 2603 6501
Proposal

Found in both Word2Vec and generated vectors 393 863
Found only in Word2Vec 2111 5173
Found only in generated vectors 10 25

Not found 272 926
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6. Conclusion

‘As machines become more and more efficient
and perfect, so it will become clear that imper-
fection is the greatness of man.” Ernst Fischer

As the literature in deep learning is flourishing, so is the
range of models and their application. In this thesis, I have
first described two common architectures used for text classi-
fication tasks namely convolutional neural networks (CNNs)
and recurrent neural networks (RNNs). I have compared
their performance and training procedure on a text classifi-
cation task and found that CNNs are easier to train and yield
better results. Nevertheless, according to the literature re-
view, hybrid models combining both architectures can yield
better results. Through my benchmark, I could not verify this
statement as I could not reach optimal performance through
my implementation but could highlight that sensitive factors
for RNNs include the gradient update function and the num-
ber of epochs. I could also show that they are computably
more expensive to train.

Also, T have discussed ways to convert textual data into
inputs that the aforementioned models can leverage to im-
prove their performance. I have highlighted that the use of
pre-trained vectors can increase by up to 10.2% the perfor-
mance of the subsequent model. Concretely, I have found
that methods that generate word vectors based on a Contin-
uous Bag of Word (CBOW) algorithm such as Word2Vec or
FastText yield better results than count-based methods such
as GloVe. Moreover, after observing the empirical results, I
have stated that this gain is probably diminishing and there-
fore not linear as the subsequent models become fine-tuned.
This could be subject to further research to confirm or not my
hypothesis. I could also confirm that the gain was dependent
not only on the subsequent models but also on the dataset
used.

Finally, I proposed an algorithm for these models to deal
with words that are unknown with unfortunately inconclu-
sive results. Further evaluations are necessary with datasets
that include a higher proportion of unknown words with a
higher representative value. The benchmark used was de-
signed to assess models on a classification task and not suffi-
cient to evaluate my proposal.

While this thesis has been narrowed down to classifica-
tion tasks for qualitative analysis, the use of neural networks
is broad ranging from autonomous cars to automatic trad-
ing. The same way economists embraced the development of
differential calculus to expand their models; entrepreneurs
leveraged the spreading of the internet to create new busi-
ness models, I expect managers and researchers to incorpo-
rate big data analytics into their day-to-day activities to un-
derstand better the world around us. However, as demon-
strated during the hearing of Mark Zuckerberg, Facebook’s
CEO, in front of the U.S. Congress about the Cambridge An-
alytical scandal, even policymakers do not have a sound un-
derstanding of the current capabilities of modern techniques
despite growing concerns about machines taking over human

jobs and big data techniques hijacking democracy. I, there-
fore, call for a democratisation of programming languages
and a sensitisation of machine learning techniques as tools
to solve problems, but also about the issues they raise. As
a consequence, I hope this work demystified the functioning
of neural networks and could be used as a gate by business
students, entrepreneurs, managers, and teachers to enter the
machine learning world.
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Abstract

In this thesis, I examine how corporate taxes, dividend taxes, personal income taxes, and consumption taxes affect corporate
payout behaviour. Using rich international panel data that consist of 40,609 firms across 115 countries from 1999 to 2013,
I run linear regressions of each of the four tax rates on three payout variables which measure frequency and magnitude of
regular cash dividends distributed by firms. In my baseline model, I find that the predictions of the new view — one of the
two views in neoclassical theory — on short-run payout responses only partially hold true. Inconsistent with initial hypotheses,
corporate taxes on average do not impact a firm’s dividend payout behaviour in the short run. Regarding dividend taxes, my
results show that the hypothesised dividend tax neutrality only holds true for the relative amount of dividends but not for a
firm’s likelihood to distribute, increase, and initiate dividends. Consistent with initial hypotheses, personal income taxes and
consumption taxes trigger mostly large payout responses in terms of frequency and magnitude of dividend payouts. In my
two model extensions, in which I focus on payout behaviour of cash-rich firms and employ a more flexible definition of the
time horizon characterising short-run payout, my findings are again only partially in line with predictions of the new view on
short-run payout responses. With these results, this thesis not only analyses well-investigated tax rates — corporate taxes and
dividend taxes — for which current literature shows mixed empirical evidence but also examines hitherto scarcely considered
tax rates — personal income taxes and consumption taxes — in the neoclassical framework and determines their impact on
corporate payout.

Keywords: corporate payout; corporate tax; dividend tax; personal income tax; consumption tax

1. Introduction and policy makers to understand how taxes affect corporate
payout.

Previous literature has stipulated a variety of models
showing whether and how a change in certain taxes poten-
tially impacts payout decisions of firms. The most prominent
frameworks in tax literature are neoclassical models which
are typically divided into the old view (e.g., Harberger, 1962;
Poterba and Summers, 1984) and the new view (e.g., Auer-
bach, 1979; King, 1977) suggesting that payout behaviour
differs across firms due to different marginal sources of fi-
nance. Beyond neoclassical theories, agency models (e.g.,

Corporate payout policy is a fundamental part of corpo-
rate finance decisions besides deciding where to invest and
how to finance projects of a firm. Taxes, however, reduce
shareholders’ wealth on both the firm level (e.g., via corpo-
rate taxes) and shareholder level (e.g., via dividend taxes),
and thus likely distort payout decisions (Jacob and Jacob,
2013b). Hence, it is important for managers, shareholders,
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Chetty and Saez, 2010; Jensen, 1986) provide an alternative
explanation of how firms are predicted to react to changes
in tax rates by considering the presence of agency issues.
Neoclassical and agency models, however, mainly focus on
corporate taxes and dividend taxes which both also con-
stitute the primary area of interest in empirical studies as
several tax reforms allowed a thorough examination of the
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impact of corporate taxes' and, in particular, dividend taxes
on corporate payout. In the setting of dividend tax cuts
in the U.S. in 2003 (e.g., Chetty and Saez, 2005) and in
Sweden in 2006 (Jacob and Michaely, 2017), a variety of
studies support predictions of agency models?, but empirical
evidence on the neoclassical predictions remains heavily dis-
puted®. Tax research also discusses the impact of personal
income taxes on corporate payout, but the exact definition
varies strongly” and rarely refers to taxes on labour income
in the context of dividends or share repurchases’. Regarding
consumption taxes, previous literature has hitherto solely
examined the effect on corporate investment (Jacob et al.,
2018) without considering the effect on corporate payout.
This is surprising given that, intuitively, corporate payout is
somehow related to the level of investment since managers
can either (i) immediately invest earnings in projects and dis-
tribute resulting profits in future periods or (ii) immediately
distribute earnings to shareholders or (iii) retain earnings
for future investments and payout.

Due to the different state of literature across tax rates,
this thesis aims at providing a comprehensive overview of
how a change in corporate taxes, dividend taxes, personal
income taxes, and consumption taxes affects payout deci-
sions of firms. Specifically, this thesis contributes to con-
temporary literature in two ways. First, it adds to the on-
going discussion about mixed empirical evidence on neoclas-
sical theories for well-researched tax rates (i.e., corporate
taxes, dividend taxes). Second, it bridges the current gap in
literature by embedding scarcely considered tax rates (i.e.,
personal income taxes, consumption taxes) in the neoclas-
sical frameworks and investigating their impact on corpo-
rate payout. To achieve this, I use international panel data

1In the context of corporate taxes, Poterba et al. (1987), for instance,
examines how the 1986 Tax Reform Act in the U.S. is predicted to lower
corporate savings and reduce tax incentives to retain earnings and distribute
dividends.

2These studies conclude that frictions such as agency issues (Chetty and
Saez, 2005, Jacob and Michaely, 2017) and shareholder conflicts (Jacob and
Michaely, 2017) reduce the responsiveness of corporate payout in case of a
dividend tax change.

3Chetty and Saez (2005) argue that listed U.S. firms responded to the
2003 dividend tax cut in accordance with the old view. By contrast, Brav
etal. (2008) conclude that the immediate payout response of these firms was
only temporary and that the dividend tax cut was of “second-order impor-
tance ...[as only] firms ‘sitting on the fence’ [to initiate dividends]” (p.390)
were primarily affected.

4Wu (1996), for example, uses the term “personal taxes” (p.293) synony-
mously for dividend taxes in his empirical study on the payout behaviour
of listed U.S. firms. Likewise, Lewellen and Lewellen (2006) employ “per-
sonal tax rates on interest, dividends, and realized capital gains” (p.5) in
their single- and multi-period models when theorising how corporate pay-
out changes depending on the firm’s source of finance.

5In the context of private firms, Jacob and Michaely (2017), for instance,
argue that the taxation of labour income vis-a-vis dividends incentivises only
a specific group of owners to adjust the corporate payout of their firm due to
“strong empirical evidence that, with a limited number of owner[-managers
in closely-held corporations], there is strong substitutability between divi-
dends and wages (the other possible form of payout to owners in private
firms)” (p.3219). Other empirical studies also examine the sole impact of
personal income taxes whose scope, however, is mainly on macroeconomic
variables such as economic growth (Gale and Samwick, 2016; Pali¢ et al.,
2017).

with focus on non-financial, non-utility, non-transportation,
and non-telecommunication firms across 115 countries over
the period 1999 to 2013 with sufficient variation in tax rate
changes. My estimation strategy involves three steps: (i)
Pre-analysis, (ii) baseline regression, and (iii) extensions to
the baseline model. Inspired by Jacob et al. (2018), the
pre-analysis is mainly based on a linear probability model to
rule out the concern that tax rate changes are determined by
macroeconomic factors. The baseline regression is the main
analysis in this thesis where I investigate the average effect on
corporate payout in the same year in which a change in one
of the four tax rates occurs. Consistent with previous studies
(e.g., Jacob and Jacob, 2013a), I measure payout, which is
defined as regular cash dividends due to insufficient data on
other payout channels, by three dependent variables cover-
ing frequency and relative amounts of dividends. Beyond the
baseline model, I also introduce two extensions which con-
sider heterogeneity in payout responses potentially caused by
different levels of cash holdings (e.g., Jacob and Michaely,
2017) and the impact of tax rate changes on payout one year
after a tax rate change occurs.

The results of my baseline regression show that the aver-
age payout response only partially follows neoclassical pre-
dictions on short-run payout responses as stipulated by the
new view. Inconsistent with initial expectations, corporate
taxes on average do not change a firm’s dividend payout be-
haviour in the year where a tax change becomes effective.
Similarly, the hypothesised “dividend tax neutrality” (Chetty
and Saez, 2010, p.5) only holds with respect to the rela-
tive amount of dividends. Vice versa, a change in dividend
taxes interestingly impacts a firm’s propensity to pay divi-
dends and likelihood to increase or initiate dividends in dif-
ferent directions (i.e., sign of coefficients differs) even though
the relative effect size is small. Personal income taxes show
mostly significant coefficients suggesting that a higher tax
rate increases the attractiveness of investments in corporate
projects such that firms invest more. Thus, they exhibit a
slightly lower propensity to pay dividends and distribute con-
siderably lower amounts in the short run. The results on con-
sumption taxes are fully in line with my initial hypotheses
implying that a rise in this tax rate increases the tax wedge
(Jacob et al., 2018) exerting pressure on profits of corpo-
rate projects such that firms invest less in the short run and
therefore distribute, increase, and initiate dividends more
frequently and pay higher relative amounts.

The baseline extensions reveal mostly similar findings.
Cash-rich firms appear to react more strongly compared to
the average payout response in terms of their likelihood to
increase or initiate dividends if personal income taxes, con-
sumption taxes, and (depending on the fixed effect) corpo-
rate taxes are changed. Although the payout response of
cash-rich firms is expected to match more closely short-run
predictions of the new view, the results do not fully confirm
this expectation and thus are again only partially in line with
predictions of neoclassical theory. When considering the pay-
out response one year after a tax rate change, corporate taxes
again do not appear to impact payout behaviour on average.
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Also, corporate payout is mostly not neutral to a change in
dividend taxes. Interestingly, the coefficient of personal in-
come taxes on a firm’s likelihood to increase or initiate div-
idends changes its sign suggesting that payout decisions in
subsequent periods are increasingly determined by the fact
that firms bear higher labour costs from an increase in this
tax rate. Regarding consumption taxes, the results are very
similar to the findings of the baseline model.

The remaining part of this thesis is divided into seven
further sections. Section 2 provides a profound theoretical
background on both neoclassical frameworks old view and
new view which I use as a foundation to formulate hypothe-
ses on how each of the four tax rates affects dividend payout.
Section 3 presents my methodology and displays descriptive
statistics on all variables of interest employed in the main
analysis. In section 4, I conduct my pre-analysis using the
linear probability model and test whether my dataset con-
tains sufficient variation in tax rate changes. Sections 5 and
6 show the results of my baseline regression and extensions
to the baseline model, respectively. In section 7, I test for
robustness of my baseline results. Finally, the conclusion of
this thesis is shown in section 8.

2. Theoretical Background and Hypothesis Formulation

Even though various theories provide explanations on
how taxes might affect corporate payout decisions, empir-
ical studies mostly analyse their findings in the two neo-
classical frameworks: The old view (Feldstein, 1970; Har-
berger, 1962, Harberger, 1966; Poterba, 2004; Poterba and
Summers, 1984) and the new view (Auerbach, 1979; Auer-
bach and Hassett, 2003; Bradford, 1981; King, 1977). Con-
ceptually, these views differ in the underlying assumption
of how firms fund the additional project (i.e., what consti-
tutes a firm’s marginal source of finance). That is, the old
view assumes that firms finance new projects via new equity
whereas the new view is built on the idea that retained earn-
ings are used (see also Chetty and Saez, 2005). In the fol-
lowing, old view and new view will be incorporated into an
intuitive single-period model based on previous studies (Al-
stadsater et al., 2017; Becker et al., 2013; Chetty and Saez,
2010; Lewellen and Lewellen, 2006) to illustrate the effect of
corporate taxes (7€), dividend taxes (zP), personal income
taxes ('), and consumption taxes (t"47) on corporate pay-
out decisions. Figure 1 visualises how an increase in each of
these tax variables impacts investors’ after-tax returns which,
in turn, changes investment and payout decisions. For sim-
plicity, my hypotheses are built on two assumptions. First, I
restrict corporate payout to regular cash dividends and ab-
stract from special dividends and share buybacks®. Second, I

6As discussed by Chetty and Saez (2005), firms have three payout chan-
nels: Regular cash dividends, special dividends, and share buybacks. I ex-
clude special dividends as they occur infrequently and are difficult to mea-
sure such that clear causal inference would not be possible. I also exclude
share buybacks since my dataset does not contain any information on this
payout channel. However, I acknowledge the increasing importance of share

use a highly stylised definition of ©! in my hypothesis for-
mulation which involves both “personal taxes on interest”
(Lewellen and Lewellen, 2006, p.5) and personal taxes on
labour income’.

2.1. Old View and New View in the Single-Period Model

In the old view, the individual investor decides at the be-
ginning of period t whether to (i) invest in the firm’s project
by buying new equity or (ii) invest in an alternative invest-
ment opportunity which is for simplicity assumed to be a
risk-free bond (see also Alstadseter et al., 2017). If the in-
vestor decides to invest $1 in a firm’s project (see arrow A in
Figure 1), the project will generate profits depicted by the
pre-tax rate of return, r. These profits are assumed to be
distributed in form of dividends in t+1 and are subject to
double taxation due to taxes levied on both the firm level
and the shareholder level (Jacob and Jacob, 2013b). On
the firm level, corporate taxes are levied on pre-tax project
earnings. Assuming that firms fully distribute their after-tax
profits as dividends at the beginning of period t+1, potential
payout $1[1+r] is effectively reduced to actual payout (i.e.,
gross dividends distributed by firms) $1[1+r(1- t¢)] (arrow
B). On the shareholder level, these dividends are further re-
duced by dividend taxes finally yielding the after-tax divi-
dend income (i.e., net dividends received by shareholders)
$1[14+r(1- 7€ )(1-7P™)] (arrow C). By contrast, the alter-
native investment in a risk-free bond generates an interest
payment denoted by the coupon rate, i, and is not subject
to double taxation. In this scenario, only personal income
taxes reduce pre-tax interest income $1[1+i] to the level of
after-tax interest income $1[1+i(1-t7)] (arrow D). Thus, the
rational investor will always invest in the firm’s project if and
only if the after-tax dividend income (arrow C) is larger than
after-tax income on the bond (arrow D). Hence, the investor
invests in the firm if pre-tax return on the firm’s project, r, at
least meets the individual investor’s minimum required rate
of return, r7, ., which is defined as the pre-tax rate of return
on the firm’s project where the investor is indifferent between
buying new equity and investing in the risk-free bond in t.

In the new view, the firm decides at the beginning of pe-
riod t whether to (i) invest in a profit-generating project and

buybacks as an alternative payout channel (Chetty and Saez, 2005; Von Eije
and Megginson, 2008). In this context, Jacob and Jacob (2013b) have
shown that the relative taxation of dividends vis-a-vis capital gains matters
for a firm’s payout channel choice. If capital gains are taxed at a higher rate
than dividends, firms would prefer distributing dividends over share buy-
backs and vice versa, as this yields a higher after-tax income for sharehold-
ers. Thus, share buybacks and the corresponding relative taxation should be
incorporated in future studies.

7This treatment is in line with the current tax code of the United States
(Office of the Law Revision Council, 2018). However, it does not hold for
other tax jurisdictions such as Germany where interest income (25% flat tax)
is presently taxed at a different rate compared to labour income (45% top
marginal income tax rate) (Federal Ministry of Justice and Consumer Protec-
tion, 2017). In the empirical part of this thesis, I nonetheless try to interpret
my results using the hypothesised mechanism of my simplified single-period
model, but I also acknowledge that the definition of 7! varies across coun-
tries and therefore add footnote 28 on this topic in section 5.
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Figure 1: Investment and Payout Decisions in the Old View and the New View

subsequently distribute dividends at the beginning of t+1 or
(ii) directly distribute its retained earnings at the beginning
of period t to shareholders who invest in a risk-free bond im-
mediately after receiving this dividend payment in t. Similar
to the old view, the project will generate a pre-tax return, t,
if the firm decides to invest $1 in the project, and r will be
again diminished by corporate taxes and dividend taxes (ar-
rows E and F) yielding the shareholder’s after-tax dividend
income $1[1+r(1- 7€ )(1-7™)] at the beginning of period
t+1. If the firm decides not to invest in its project, the divi-
dends distributed in period t are again subject to T2 yield-
ing net dividends $1 (1-7PY) (arrow G). After investing these
net dividends in a risk-free bond, investors finally obtain
$1(1- 7P )x [1+i(1-7H)] (arrow H). Assuming that firms
aim at maximising shareholders’ after-tax wealth, the firm
will invest in its project if and only if the shareholder’s after-
tax dividend income in t+1 (arrow F) is larger than the after-
tax income on the risk-free bond (arrow H). Likewise, r must
again at least meet the individual investor’s minimum re-
quired rate of return, r_, such that the firm invests in its
project instead of directly distributing dividends in period t.

2.2. Hypothesis Formulation

Based on this theoretical foundation, four hypotheses will
be outlined in the following. These hypotheses aim at ex-
plaining the potential effect of each of the four taxes on div-
idend payout in the light of both the old view and the new
view, and thus consider that the marginal source of finance
impacts dividend payout at different points in time: Firms in
the old view can only distribute dividends in period t+1 (i.e.,
they receive new equity in period t which they invest in new
projects generating profits and thus dividends of the next pe-
riod) whereas firms in the new view can decide whether to
distribute dividends in period t (i.e., immediate payout) or
pay dividends in period t+1 (i.e., from profits generated by
project investment in period t). A summary on the hypothe-
sised effects of an increase in taxes on dividends is shown in
Table 1.

Hypothesis 1: In t+1, an increase in corporate
taxes decreases dividends in both old view and

the new view. In t, an increase in corporate taxes
increases dividends in the new view.

If 7€ increases, firms for which new equity is the marginal
source of finance are expected to pay lower dividends in pe-
riod t+1 (Chetty and Saez, 2010). Ceteris paribus, higher
corporate taxes increase the individual investor’s minimum
required rate of return, r),,, as investors demand a higher
pre-tax return on projects, 1, to receive the same after-tax
dividend income as if taxes did not change. In other words,
investing in firms becomes less attractive relative to invest-
ing in a risk-free bond since the after-tax returns on the bond
(arrow D) remain unaffected; corporate after-tax earnings
(arrow B) and the shareholder’s after-tax dividend income
(arrow C), however, decrease. Thus, fewer projects can of-
fer an r that meets r,, of investors such that more investors
decide not to buy new equity in period t. As investors invest
in fewer projects, firms generate lower profits, and therefore
dividend payout is expected to decrease in t+1.

If firms predominantly finance their projects via retained
earnings, an increase in 7¢ is predicted to increase dividends
in period t but decrease dividends in period t+1 (Chetty and
Saez, 2010).

Similar to the old view, higher corporate taxes in the new
view increase r;,  while r itself remains unaffected. Thus,
firms are expected to distribute dividends in period t to max-
imise after-tax wealth of investors instead of investing in
profitable projects for which r is below the higher r*, . Firms
will therefore invest in fewer projects leading to lower profits
for firms. This, in turn, results in lower dividends to be dis-
tributed in t+1. As firms, however, decide whether to invest
in corporate projects or directly pay out dividends to share-
holders in period t, a lower level of investments in t directly
corresponds to higher dividends in t.

Hypothesis 2: In t+1, an increase in dividend
taxes is expected to decrease dividends in the old
view while the new view predicts no change in
dividends in t and t+1.
In the old view, an increase in T°" is expected to result
in lower dividends in t+1 (e.g., Jacob and Jacob, 2013b).
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Table 1: Effect of an Increase in Tax Rates on Corporate Payout

This table shows the effect of an increase in corporate taxes (column (1)), dividend taxes (column (2)), personal income taxes (column (3)), and consumption
taxes (column (4)) on a firm’s dividend payout in periods t and t+1 as predicted by the old view and the new view.

Increase in Tax Rate

<€ Div ! VAT

(@9) 2 3 @

. . . Direct: T Div .
Old View t+1 | Div | Div Indirect: | Div | Div
t 1 Div No Change D11ject: l D“., T Div

. Indirect: T Div
New View - -

t+1 | Div No Change Direct: T Div | Div

The line of argumentation is similar to the effect of € on
dividends predicted by the old view: A rise in 7P" increases
r,4» fewer projects with their given r will be able to satisfy the
higher 7, ,, investors invest less in corporate projects, fewer
projects are realised, and firms generate lower profits result-
ing in a lower level of dividends in t+1.

The new view stipulates “dividend tax neutrality” (Chetty
and Saez, 2010, p.5) which implies that a rise in " has
no effect on a firm’s dividend payout decision. If T°% is in-
creased at the beginning of period t and remains at this new
level until the end of period t+1, net dividends received by
the investor in t (arrow G) or t+1 (arrow F) would be equally
reduced. Consequently, r» stays constant and the firm’s de-
cision to distribute dividends in t or invest in a project fol-
lowed by paying dividends in t+1 is not impacted at all. In
essence, the new view expects dividend payout in t and t+1
to remain unaffected if T°" changes. This prediction is likely
to hold in the absence of agency issues and shareholder con-
flicts®.

Hypothesis 3: An increase in personal income
taxes reveals an ambiguous effect on corporate
payout in both old view (t+1) and new view (t,
t+1).

Irrespective of the marginal source of finance, an increase
in 7/ impacts dividend payouts in two ways. First, there is a
direct effect on the after-tax returns on the bond (old view:
arrow D; new view: arrow H). An increase in 7! reduces these
after-tax returns such that investing in corporate projects be-
comes relatively more attractive for the investor (old view)

8For simplicity, I abstract from agency issues. However, I acknowledge
that governance plays an important role in corporate payout decisions. In
the setting of the 2003 dividend tax cut in the U.S., Chetty and Saez (2005)
show that agency issues shape payout responses as well-governed firms (i.e.,
firms with strong principals such as institutional investors with large share-
holdings) or agents whose interests are aligned with shareholders’ interests
(e.g., due to high executive share ownership) respond more strongly to a
tax cut in dividends. Likewise, Jacob and Michaely (2017) find that agency
issues and shareholder conflicts mute a firm’s payout response in the context
of the 2006 dividend tax cut in Sweden.

Indirect: | Div

and the firm (new view). In other words, an increase in 7’
reduces the investor’s minimum required rate of return, ),
and rr’;ew. Consequently, investors (old view) and firms (new
view) will invest more in corporate projects in t leading to
more projects being realised, and higher profits generated
by firms which, in turn, result in higher dividends in t+1 in
both old view and new view. The new view additionally pre-
dicts an effect on dividends in period t. More investments in
corporate projects in t automatically mean that less retained
earnings are available to be distributed in t. Hence, dividends
in t are expected to decline if T/ increases.

Second, there is an indirect effect on the project pre-tax
returns, 1, which are a function of /. Intuitively, a rise in 7’
increases labour costs of firms. Assuming that revenues gen-
erated by projects remain constant, this rise in labour costs
decreases r leading to lower after-tax earnings on the firm
level (old view: arrow B; new view: arrow E) and reduced
net dividends in t+1 (old view: arrow C; new view: arrow F).
Hence, fewer projects will be able to meet r,, and r;,  such
that investors (old view) and firms (new view) invest less in
corporate projects in t resulting in lower profits and a lower
level of dividends in t+1 in both neoclassical models. Once
again, the new view additionally predicts an effect on divi-
dends in t. A lower level of investments in corporate projects
in t directly corresponds to more retained earnings which
can be distributed in period t. Thus, dividend payments in
t are expected to rise if T increases. This hypothesis is likely
to hold if workers have a strong negotiation power vis-a-vis
firms, for example in the presence of strong unions, allowing
workers to shift part of the tax burden to firms (Alesina et al.,
2002).

Hypothesis 4: In t+1, an increase in consump-
tion taxes decreases dividends in both old view
and new view. In t, an increase in consumption
taxes increases dividends in the new view.

Similar to personal income taxes, consumption taxes have
an indirect effect on corporate payout. “Consumption taxes
drive a wedge between the price that consumers pay and the
price that producers receive. Hence, [the] firms’ profitability
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is expected to decrease when consumption taxes increase”
(Jacob et al., 2018, p.3). In other words, an increase in "7
lowers the pre-tax return on firms’ projects, r. Thus, fewer
projects are able to meet r,, and r;;,  such that investors (old
view) and firms (new view) invest less in corporate projects
in t. In t41, this yields lower profits and therefore lower div-
idends according to both old view and new view. In addition,
the new view stipulates higher dividends in t as a lower level
of investment in corporate projects means that more retained

earnings will be distributed in t.

3. Data and Descriptive Statistics

The majority of data used in my analysis was issued by
the WHU Chair of Business Taxation which, in turn, with-
drew these data from three main sources. First, firm-level
information on listed firms around the world over the period
1997 to 2013 was derived from the Compustat North Amer-
ica and Global database. Second, annual tax rates involv-
ing corporate taxes, dividend taxes, personal income taxes,
and consumption taxes were retrieved from tax handbooks
released by Ernst & Young, KPMG, PricewaterhouseCoop-
ers, and Deloitte. Third, country-level statistics comprising
macroeconomic variables, country governance indicators, in-
come group descriptions’, and region group classifications'’
were extracted from the World Bank database.

After consolidating all data'!, I converted each monetary
variable which was originally quoted in each firm’s local cur-
rency into USD using average annual exchange rates pro-
vided by the WHU Chair of Business Taxation. Subsequently,
I conducted general data cleaning by excluding firms with
SIC codes 4000-4999 and 6000-6999'?. The general data

The original dataset provided by the WHU Chair of Business Taxation
contained some missing data entries on income group descriptions which,
however, were required to successfully change fixed effects in the robustness
section. Using World Bank data, I manually amended 15 income group de-
scriptions in total for Argentina, Jamaica, New Zealand, and Nigeria where
some country-years contained a missing entry. Please refer to the Excel file
WorldBank Data_Income_History stored on the USB device for details on
the missing income group descriptions for these four countries. Further-
more, [ retrieved the full historical income group dataset from the World
Bank database covering the period 1998 to 2013 for 66 countries like Esto-
nia, Saudi-Arabia, Taiwan, and Vietnam for which firm data already existed
but no information on income groups was present. Please refer to the Excel
file WorldBank_income_group_history_missing stored on the USB device for
details on the missing income group descriptions for these 66 countries.

107 extracted region names and region codes from the World Bank
database and added these data to the information provided by the WHU
Chair of Business Taxation. This step was required to cluster all countries in
my dataset by region and successfully make changes to the definition of my
fixed effects in the robustness section. Please refer to the Excel file World-
Bank Data_Region_Codes stored on the USB device for detailed region in-
formation provided by the World Bank.

1The WHU Chair of Business Taxation additionally provided data on To-
bin’s q with high coverage across firms in my sample which I merged into
my dataset. The initially provided dataset revealed a poor coverage of Mar-
ket Value (i.e., market value of equity) and thus Tobin’s q. Other attempts
to generate Market Value via Common Shares Outstanding and Price Close
(i.e., market price per share) hardly increased the coverage.

12This treatment is similar to Chetty and Saez (2005) and Jacob and Ja-

cleaning was further complemented by dropping all obser-
vations which appeared illogical for my analysis in six steps.
First, I dropped observations for which there was no infor-
mation on total assets or when total assets were negative.
Second, I removed bankrupt firms (i.e., firms with a book
value of common equity equal to or lower than zero) from
my dataset. Third, I dropped firms with negative values
for cash and short-term investments, sales, and cash divi-
dends'®. Fourth, firms with leverage values smaller than zero
and larger than or equal to one were excluded, too. Fifth,
I also removed observations with negative tax rates or tax
rates exceeding one. Sixth, I excluded negative values for the
macroeconomic variables GDP per Capita, Openness, Gov-
ernment Debt, and Interest Payments which, realistically, are
not smaller than zero.

Lastly, I winsorised my lagged firm controls and non-
dummy dependent variables below the 1st percentile and
above the 99th percentile of observations to mitigate biased
results caused by large outliers. After all adjustments, the
sample used for my baseline regression consists of 42,672
firms across 115 countries over the period 1997 to 20134,
Table 2 shows descriptive statistics for all dependent vari-
ables, tax rates, firm-level variables, and country-level vari-
ables contained in this sample.

4. Pre-Analysis: Variation in Tax Rate Changes and Lin-
ear Probability Model

Prior to running a baseline regression, two major con-
cerns have to be addressed. First, the underlying sample has
to overcome the frequently objected “lack of compelling tax
variations” (Chetty and Saez, 2005, p. 792) to avoid a small
number of events potentially biasing my results. Otherwise,
it would be difficult to make a well-founded generalisation of
the impact of taxes on corporate payout. Second, all four tax
rates, which constitute the independent variables of my base-
line regression, have to be exogenous to conduct convincing
causal inference.

To address the first concern, the sample of my baseline
regression indeed contains sufficient variation in all four tax
rates. Across all 115 countries over the period 1999 to 2013,
there are 315 corporate tax changes (48 increases; 267 de-
creases), 144 dividend tax changes (72 increases; 72 de-
creases), 217 personal income tax changes (76 increases; 141
decreases), and 105 consumption tax changes (72 increases;
33 decreases).

cob (2013b) dropping financial firms (6000-6999) and utility firms (4900-
4999) because firms in these industries are subject to “additional regulations
and hence might have different payout behaviour” (Chetty and Saez, 2005,
p.798). I additionally excluded transportation and (tele-)communication
firms (4000-4899) since most of these firms are privatised companies which
are small in number but contribute disproportionately much to aggregate
dividends especially in the European Union (Von Eije and Megginson, 2008).

13Cash dividends refer to the variable Cash Dividends (Cash Flow) in my
consolidated dataset serving as a proxy for corporate payout.

4Since all tax rates start in 1999, my baseline sample effectively starts in
1999, too. Consequently, the number of firms used in my baseline regression
drops to 40,609 while the number of countries remains unchanged.
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Table 2: Summary Statistics of Main Variables

This table is an overview of summary statistics of my main variables covering 42,672 firms across 115 countries over the period 1997 to 2013. Panel A shows
the three payout variables which are used as dependent variables in my baseline regression. Panel B presents the four tax variables of interest. Panel C and
Panel D depict firm-level and country-level controls, respectively. Please see table A.1 in the appendix for detailed definitions of all main variables. Note:
Summary statistics of Dividend Yield (t) in Panel A and all firm-level controls in Panel C are based on the winsorised version of the respective variables to

debias the mean.

Variable N Mean Standard 25th Median 75th
Deviation percentile percentile
Panel A: Payout Variables
Dividend Payer (t) 272,182 0.6584 0.4742 0 1 1
Dividend Increase (t) 224,464 0.2458 0.4305 0 0 0
Dividend Yield (t) 251,472 0.0087 0.0230 0.0000 0.0002 0.0052
Panel B: Tax Variables
Corporate Tax 345,995 0.3215 0.0742 0.2700 0.3300 0.3900
Dividend Tax 345,374 0.1965 0.1183 0.1000 0.2000 0.2643
Personal Income Tax 345,374 0.3973 0.0938 0.3500 0.4000 0.4641
Consumption Tax 325,902 0.1073 0.0627 0.0519 0.1000 0.1700
Panel C: Firm-level Controls
Leverage 369,79 0.0933 0.1564 0.0007 0.0112 0.1167
Cash Holdings (L. TA) 338,23 0.1270 0.2728 0.0020 0.0203 0.1130
Cash Flow 327,475 0.0110 0.1602 -0.0002 0.0029 0.0541
Profits 337,816 0.0267 0.2107 -0.0037 0.0517 0.1141
Retained Earnings 336,703 -0.2718 1.3584 -0.0032 0.0033 0.0581
Ln(Sales Growth) 323,767 0.0876 0.4336 -0.0460 0.0730 0.2182
Tobin’s q 279,478 1.5000 3.5913 0.3319 0.6838 1.4020
Firm Size 388,244 6.5550 3.0444 4.3861 6.3837 8.4699
Panel D: Country-level Controls
Macroeconomic Variables
Ln(GDP per Capita) 363,858 9.6126 1.3841 8.6600 10.4301 10.5557
GDP Growth 363,943 3.5811 3.4686 1.7292 3.1400 5.1472
Inflation 363,943 2.7069 4.3171 0.8477 2.0327 3.7157
Openness 304,225 0.7265 0.8648 0.2829 0.4831 0.6549
Deficit 269,554 -2.6677 3.9788 -4.8523  -3.1779 0.0177
Interest Payments 279,996 0.0225 0.0123 0.0150 0.0230 0.0276
Government Debt 196,656 60.9354 37.7064 40.0881 53.5029 64.0318
Governance Indicators
Voice and Accountability 371,063 0.6718 0.8952 0.3900 1.0100 1.3500
Political Stability 371,058 0.3317 0.8166 -0.2000 0.6000 0.9600
Government Effectiveness 371,047 1.1320 0.7665 0.4000 1.4600 1.7500
Regulatory Quality 371,047 0.9723 0.7836 0.4200 1.1900 1.6200
Rule of Law 371,063 0.9889 0.7968 0.2900 1.3300 1.6100
Control of Corruption 371,047 0.9796 0.9781 0.0500 1.2900 1.8350

To address the second concern, I employ a linear prob-
ability model inspired by Jacob et al. (2018) to determine
likely country-level correlates with the magnitude of tax rate
changes and ideally rule out issues “that tax policy is not
exogenously determined [sic] but related to changes in eco-
nomic conditions” (Jacob et al., 2018, p.15). Results of the
linear probability model are presented in Table 3.

Overall, changes in dividend taxes and personal income
taxes appear to be exogenous. Changes in corporate taxes
and consumption taxes, however, are likely to be influenced
by the macroeconomic factors GDP Growth and Ln(GDP per
Capita) and the factors GDP Growth and Deficit, respectively.
The significance of GDP Growth suggests that, based on my
dataset, policy makers tend to decrease (increase) corporate
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Table 3: Results of Linear Probability Model

This table presents how macroeconomic determinants of tax rates potentially affect the magnitude of a tax rate change in corporate taxes (column (1)),
dividend taxes (column (2)), personal income taxes (column (3)), and consumption taxes (column (4)). The definitions of all tax rates and macroeconomic
variables are outlined in the appendix in Table A.1. I include country fixed effects and region-year fixed effects in all four regressions. I report robust standard
errors clustered at the country level which are shown in parentheses. *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively.

Magnitude of Tax Rate Change in

Corporate Dividend Personal Income Consumption
Taxes Taxes Taxes Taxes
(€Y (3) C))
GDP Growth -0.0006**  -0.0004 0.0000 -0.0006***
(0.0002) (0.0008) (0.0006) (0.0001)
Ln(GDP per Capita) 0.0258** -0.0353 0.0114 -0.0003
(0.0113)  (0.0292) (0.0218) (0.0052)
Inflation -0.0000 0.0002 0.0000 -0.0000
(0.0001)  (0.0003) (0.0002) (0.0001)
Deficit -0.0002 0.0005 -0.0005 0.0004*
(0.0002) (0.0008) (0.0004) (0.0002)
Openness 0.0089 0.0105 -0.0024 0.0037
(0.0072)  (0.0215) (0.0187) (0.0036)
Interest Payments 0.1823 0.0757 0.1096 0.1045
(0.1348)  (0.3864) (0.1674) (0.0632)
Observations 800 743 743 709
Country FE Yes Yes Yes Yes
Region-Year FE Yes Yes Yes Yes
Adjusted R-squared 0.014 -0.072 -0.106 0.095

taxes and consumption taxes in periods where the economy is
in a boom phase (recession). Also, corporate taxes are likely
to be increased (decreased) if a country generates a higher
(lower) level of GDP per Capita implying that an economy
becomes more (less) productive and thus wealthier (poorer).
Consumption taxes are likely to rise (be reduced) if a coun-
try’s budget deficit increases (decreases). This result seems
to be reasonable as, intuitively, an increase in government
spending needs to be somehow financed; this finding, how-
ever, is not in line with the linear probability model results of
Jacob et al. (2018) despite using (almost) the same under-
lying dataset'”. Across all tax rates, the variables Inflation,
Openness, and Interest Payments appear to be insignificant.

Based on these results, I include a GDP-Growth-Ln(GDP
per Capita) cluster in a fixed effect used in my baseline re-
gression'®. This way, it is possible to account for poten-
tial endogeneity in tax rate changes and compare countries
which are economically similar in terms of GDP level and
GDP growth rates.

SInterestingly, my linear probability model results on consumption taxes
(column (4)) are based on 709 observations whereas Jacob et al. (2018)
rely on 664 observations.

161 deliberately excluded Deficit from the fixed effect because the lin-
ear probability model only proves marginal significance of this variable
(p=.091). This stands in stark contrast to GDP Growth (p=.024; p=.000)
and Ln(GDP per Capita) (p=.027). Thus, the significance of Deficit arguably
could have emerged by chance. Also, excluding Deficit is unlikely to ad-
versely affect my baseline results since it is correlated with the other two
macroeconomic variables incorporated in the fixed effect. Please refer to
the correlation matrix in 2.0 LPM_RESULTS_(EDITED) for further details.

5. Baseline Regression

To investigate the average effect of a tax rate change
on corporate payout, I stipulate the following linear regres-
sion model using the ordinary least squares (OLS) estimation
method:

Payout; ; . = a, + f8; CorporateTax; , + f3,DividendTax; ,
+ B3PersonallncomeTax; . + 3,ConsumptionTax; ,
+ 6lq)i,j,t71 + 52Fj,t + OLi + ag,k’t + ei,j,t
(1)
The dependent variable Payout; ; . is a payout measure of
firm i headquartered in country j in year t. This payout mea-

sure is a placeholder for the three payout variables Dividend
Payer (t), Dividend Increase (t)!” and Dividend Yield (t)'®

17Dividend Increase (t) covers a firm’s likelihood to substantially increase
(if a firm was a dividend payer in year t-1) or initiate dividends in year t
(if a firm was no dividend payer in year t-1). This variable is particularly
interesting as “against the background of the general stickiness of dividends
..., the decision to initiate or substantially increase dividends is a strong
commitment to a long stream of cash outlays (as opposed to a simple 1-
year commitment that can be easily reversed)” (Jacob and Jacob, 2013b,
p-1256). In my baseline regression, a substantial increase in dividends is
defined as an increase by at least 25%. This might be viewed as sufficiently
strict since the number of observations where firms pay dividends in year t-1
and increase them in year t drops from 90,546 to 48,002 while observations
covering initiations remain unaffected.

18pividend Yield (t) is defined as the dividend-to-total-assets ratio similar
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based on previous literature (e.g., Jacob and Jacob, 2013a;
Alstadseter et al., 2017). All variable definitions are pre-
sented in the appendix in Table A.1. In my baseline model, I
restrict all dependent variables to the time identifier (t) rep-
resenting year t (i.e., the year in which a change in taxes
first becomes effective) for two reasons. First, most firms are
likely to react quite fast to a change in taxes to maximise
profits and shareholder value. This assumption seems to be
reasonable as most tax rate changes are announced several
months or, in favourable cases, a year in advance prior to be-
coming effective. Second, Brav et al. (2008) have shown that
tax-related payout motives gain importance in the immediate
aftermath of a tax rate change but only play a minor role in
subsequent periods.

The independent variables of interest are the four tax

variables CorporateTax; ., DividendTax; ;, PersonallncomeTax; ,,

and ConsumptionTax;,. The baseline regression also in-
cludes two control vectors to account for alternative deter-
minants of corporate payout on the firm level and the country
level which are denoted by ®; ; ,_; and I} ,, respectively. Con-
trol vector ®; ; ., consists of the following eight firm-level
controls which are frequently used in literature'” (e.g., Jacob
and Jacob, 2013b): Leverage, Cash Holdings (L. TA), Cash
Flow, Profits, Retained Earnings, Tobin’s q, Sales Growth,
and Firm Size’’. To rule out endogeneity concerns, I addi-
tionally lag each variable included in this vector by one year.
Control vector T, consists of nine country-level controls.
Inspired by Jacob et al. (2018), I included the three macroe-
conomic variables GDP Growth, Ln(GDP per Capita), and
Inflation?! besides the six governance indicators Voice and
Accountability, Political Stability, Government Effectiveness,

to Alstadseeter et al. (2017). Due to poor coverage of market capitalisation,
conventional definitions such as “the dollar amount of dividends paid out
in year t+1 divided by the end-of-year t equity market value” (Jacob and
Jacob, 2013a, p.1251) are not used.

19My baseline regression does not include any proxy for ownership struc-
ture although previous literature has shown that it heavily impacts corporate
payout decisions as agency issues (e.g., Chetty and Saez, 2005) and share-
holder conflicts might arise or be mitigated (Jacob and Michaely, 2017). Due
to lack of compelling data, however, I cannot proxy for ownership structure
(e.g., via percentage of closely held shares (Jacob and Jacob, 2013b)) which
may reduce the explanatory power of my model.

2OLeverage considers that creditors in firms with a high debt-to-capital
ratio tend to urge these firms to refrain from distributing dividends (e.g.,
Jensen, 1986). Cash Holdings (L. TA) acknowledges that cash-rich firms,
intuitively, have more funds to be distributed to shareholders (e.g., Chetty
and Saez, 2010). I incorporate Cash Flow to capture the positive effect of
a company’s cash flow on dividends (e.g., Jacob and Jacob, 2013a) which
goes beyond considering pure cash holdings. Profits are a proxy for inter-
nal resources in addition to cash holdings (e.g., Jacob and Michaely, 2017).
Retained Earnings acknowledge that mature firms tend to have larger re-
tained earnings which are more likely to distribute dividends and pay larger
amounts (e.g., Jacob and Jacob, 2013b). Tobin’s q is “a proxy for stock un-
dervaluation and growth opportunities” (Jacob and Jacob, 2013b, p.1254)
and Sales Growth also measures growth opportunities (e.g., Alstadseter
et al., 2017). Firm Size is used since larger firms, intuitively, have a higher
propensity to pay dividends and distribute larger amounts (e.g., Jacob and
Michaely, 2017).

211 exclude the remaining macroeconomic variables Openness, Deficit, In-
terest Payments, and Government Debt from my baseline regression due to
poor coverage which could potentially bias my results. Please refer to Table
1 showing that these four variables have a considerably lower coverage than

Regulatory Quality, Rule of Law, and Control of Corruption
in this control vector.

I employ two fixed effects in my baseline regression. First,
I use firm fixed effects, a;, to control for firm characteristics
which potentially impact payout decisions (e.g., firm age).
Second, I employ group-industry-year fixed effects, a, .,
where group (subscript g) refers to a GDP-Growth-Ln(GDP
per Capita) cluster. This cluster is additionally combined
with a specific industry k in year t to compare firms in the
same industry-year which also operate in economically sim-
ilar countries in terms of GDP level and GDP growth rates.
Finally, I use heteroskedasticity-robust standard errors which
are clustered at the country level since firms headquartered
in country j are exposed to the same tax system.

Returning to the four hypotheses in section 2, my base-
line regression only allows a clear causal interpretation of
results with respect to the new view in period t because of
two reasons. First, periods t and t+1 in the single-period
model are a simplified theoretical abstraction where period
t models short-run effects (i.e., payout responses in year t
and year t+1) and period t+1 models long-run effects (i.e.,
payout responses in more distant future periods such as year
t+5). Long-run effects, in particular, are difficult to measure
since period t+1 might represent many years (e.g., ten years)
until old-view firms eventually start distributing dividends.
Similarly, it could take new-view firms a long time until they
show a payout response matching predictions of period t+1
assuming that no other tax rate change occurs in the mean-
time. Also, dividend payout in more distant future periods is
increasingly determined by confounding factors (e.g., a firm’s
financial performance and general economic developments).
Therefore, I measure payout in year t (baseline regression)
and year t+1 (second baseline extension) and thus restrict
the interpretation of my results to short-run responses match-
ing period t in the neoclassical models. Second, the sole con-
sideration of short-run responses, by definition, only allows
validation or rejection of new-view predictions in period t as
the old view does not predict any payout response in period
t (i.e., old-view firms receive new equity and thus cannot ad-
just their payout behaviour to a change in taxes in period
t). This argumentation is further supported when consider-
ing a typical old-view firm characterised by young age, high
growth rates, and financial constraints (Chetty and Saez,
2010) suggesting that they are less likely to distribute div-
idends in order to grow further. If these firms become more
mature, grow at lower rates, and have sufficiently high finan-
cial reserves, they are more likely to distribute dividends on a
regular basis?* (see also Sinn, 1991). Thus, even though my
sample likely consists of dividend-paying firms which might

GDP Growth, Ln(GDP per Capita), and Inflation. Nonetheless, I incorporate
Openness, Deficit, and Interest Payments into the vector I, as a robustness
test in section 7.

22Consistent with the model of Sinn (1991), I assume that old-view firms
transform into new-view firms over time. This assumption is supported by
DeAngelo et al. (2006, p. 227): “Consistent with a life-cycle theory of div-
idends, the fraction of publicly traded ...firms that pay dividends is high
when retained earnings are a large portion of total equity (and of total as-



72 N. Herold / Junior Management Science 4(1) (2019) 63-80

exhibit some characteristics of old-view firms (e.g., financial
constraints), it is still reasonable to focus on the new view
when interpreting my baseline results.

Based on my initial hypotheses in the light of the new
view in period t, I derive the following four predictions.
First, I expect the coefficient of CorporateTax; , to be signif-
icant and positive (i.e., ; > 0) across all payout variables
as an increase in corporate taxes in year t exerts pressure
on firms which are financed via retained earnings to directly
distribute dividends in year t instead of investing in a project
whose after-tax returns, and thus dividends in future peri-
ods, decline from higher corporate taxes®>. Second, I predict
the variable DividendTax; , to be insignificant as implied by
the hypothesised “dividend tax neutrality” (Chetty and Saez,
2010, p.5). Third, the effect of a change in personal income
taxes on corporate payout depends on whether the direct ef-
fect or the indirect effect prevails. The direct effect predicts
lower (higher) dividends in year t in terms of probability
and magnitude due to higher (lower) attractiveness of in-
vesting in corporate projects compared to other investment
opportunities (e.g., bonds). Conversely, the indirect effect
forecasts higher (lower) dividends in year t due to higher
(lower) labour costs yielding a lower (higher) the relative
attractiveness of corporate projects. Thus, if the direct (in-
direct) effect dominates, I expect PersonalIncomeTaxj,t to
have significant and negative (positive) coefficients across
all payout variables (i.e., direct: 3 < 0; indirect: 3 > 0).
Fourth, I predict the coefficients of ConsumptionTax; , to be
significant and positive (i.e., 8, > 0) across all dependent
variables as a rise in consumption taxes increases the tax
wedge (Jacob et al., 2018) which reduces corporate invest-
ment. This, in turn, makes more retained earnings available
to be distributed as dividends in year t instead.

The compact version of my baseline results is shown in
Table 4. Columns (1), (2), and (3) (columns (4), (5), and
(6)) report the coefficients of each tax rate (the relative ef-
fect of a one-percentage-point increase in a tax rate) with re-
gard to the dependent variables Dividend Payer (t), Dividend
Increase (t), and Dividend Yield (t), respectively. A detailed
results overview of coefficients (standard errors) for all re-
gressors (i.e., including firm-level and country-level controls)
is shown in Table A.2 in the appendix.

Interestingly, the results of my baseline regression only
partially confirm my hypotheses based on the new view in
period t. On average, corporate taxes do not seem to im-
pact any payout variable due to insignificant coefficients in
all three columns. This suggests that firms do statistically not

sets) and falls to near zero when most equity is contributed rather than
earned.”

23This explanation assumes one of the two following conditions. First,
shareholders must be sufficiently strong to exert pressure on management
teams. As shown by Chetty and Saez (2005), this is the case for firms with
strong principals, i.e., large institutional investors such as pension funds and
independent directors are major shareholders. Second, firms in which their
management teams hold a high percentage of shares are more likely to act on
behalf of their shareholders as managers are major shareholders themselves
and thus benefit from higher dividends, too (Chetty and Saez, 2005).

respond to a change in corporate taxes which is not consis-
tent with the new view in period t. Although the insignificant
coefficients suggest that an effect is statistically not present,
it is surprising that the sign of all coefficients is negative and
not, as expected, positive. My hypothesis on corporate taxes
does not predict this outcome which I therefore recommend
examining in future studies.

According to my baseline regression, the hypothesised
“dividend tax neutrality” (Chetty and Saez, 2010, p.5) only
holds with regard to a firm’s relative amount of dividends**
due to an insignificant coefficient in column (3). With respect
to a firm’s propensity to pay and the likelihood to increase or
initiate dividends, dividend taxes seem to influence a firm’s
payout behaviour due to significant coefficients in columns
(1) and (2). Surprisingly, the direction of the effect (i.e., sign
of coefficient) differs between the dependent variables. In-
consistent with initial expectations, column (1) shows that a
rise in dividend taxes in year t by one percentage point (in
the following abbreviated as pp) increases the probability of a
firm distributing dividends in year t by 0.24pp”°. The relative
effect, however, is comparatively small as a one-pp increase
in dividend taxes in year t increases the probability of a firm
paying dividends in year t by 0.36%° relative to the average
probability of a firm paying dividends. Despite this small rel-
ative effect size, neither the new view nor empirical studies
evidencing a negative relation between dividend taxes and
a firm’s propensity to pay dividends (e.g., Chetty and Saez,
2005) support the positive coefficient in column (1). Thus,
the reason for this effect should be further investigated in fu-
ture studies. On the contrary, a rise in dividend taxes in year
t by one pp results in a lower likelihood to increase or initiate
dividends in year t by 0.25pp. This result is again not in line
with the new view but would be supported by the empirical

24This interpretation appears to depend on the observations in my sample
as the coefficient of DividendTax; ; in column (3) is only marginally not sig-
nificant (p=.109). Therefore, it is possible that a slightly different sample
composition could have shown significant results implying that the “divi-
dend tax neutrality” (Chetty and Saez, 2010, p.5) does not hold. In such a
scenario, the effect on Dividend Yield (t) would have a similar interpretation
as the effect on Dividend Payer (t) (see column (1)), but the relative effect
size of 1.02% is considerably larger given that Dividend Yield (t) is defined
as dividends divided by lagged total assets. Please refer to footnote 26 for
the relative effect calculation.

25Please note that all coefficients in Table 4 pertain to tax rates ranging
from O (i.e., 0%) to 1 (i.e., 100%) in my original dataset. For example, the
tax rate 0.30 for a specific country-year refers to a tax rate equal to 30%.
To interpret the coefficients as a one-pp increase in a tax rate (i.e., a tax
rate change by one unit equivalent to one pp), I mathematically transform
these tax rates into whole numbers ranging from 0 to 100 (i.e., I multi-
ply these tax rates by 100) and simultaneously divide the respective coeffi-
cients by 100. Hence, the coefficient 0.2389 (0.24 after rounding) turns into
0.002389 (0.0024). As my dependent variables are also defined between
0 (0%) and 1 (100%), I can interpret a one-pp increase in the corporate
tax rate (e.g., from 30% to 31%) as a change in my dependent variable by
0.2389pp (0.24pp).

26The relative effect is calculated by dividing 0.002389 (i.e., transformed
coefficient) by 0.6584 (i.e., the average value of the dependent variable;
please refer to Table 2 presenting summary statistics on all dependent vari-
ables). This yields 0.0036 or 0.36%. Please refer to the tab Relative Effect
Calculation in the Excel file 3.0_Baseline Results (Edited) Final for all cal-
culations.
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Table 4: Results of Baseline Regression (incl. Relative Effects)
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This table shows the compact version of the results of my baseline regression from 1999 to 2013. Additionally, the relative effect of a change in taxes on
each dependent variable is included in columns (4), (5), and (6). Relative effects are computed by dividing the coefficient of a tax variable by the mean of
the respective dependent variable. The dependent variables are Dividend Payer (t) (column (1) and (4)), Dividend Increase (t) (column (2) and (5)), and
Dividend Yield (t) (column (3) and (6)). All independent variables are defined in the appendix in Table A.1. I include firm fixed effects and gdp-cluster-
industry-year fixed effects in all three regressions. Please note that gdp-cluster is a placeholder representing a GDP-Growth-Ln(GDP per Capita) cluster. I
report robust standard errors clustered at the country level which are shown in parentheses. *, **, and *** denote significance at the 10%, 5%, and 1%
level, respectively. Please refer to Table A.2 in the appendix for a more detailed overview (including number of observations, adjusted R-Squared, etc.) of
my regression results. Note: The mean of Dividend Yield (t) is based on the winsorized version of the respective variable to avoid biased results due to the

presence of extreme values.

Coefficients Relative Effects

(1) (2) (3) @ (5) (6)

Corporate Tax -0.1549 -0.2884 -0.0154 -0.24% -1.17% -1.78%
(0.1821) (0.1872) (0.0166)

Dividend Tax 0.2389***  -0.2461** 0.0088 0.36% -1.00% 1.02%
(0.0655) (0.1213) (0.0054)

Personal Income Tax -0.3154%** -0.1049 -0.0543***  -0.48% -0.43% -6.27%
(0.1185) (0.0903) (0.0129)

Consumption Tax 1.2559* 1.8259***  (0.0883** 191% 7.43% 10.19%
(0.6998) (0.6860) (0.0420)

findings of Chetty and Saez (2005) showing that listed firms
increasingly initiated or increased dividends in the six quar-
ters following the dividend tax cut in the U.S. in 20037, Yet,
the relative effect size is again small: A one-pp increase in
dividend taxes merely reduces a firm’s likelihood of increas-
ing or initiating dividends in year t by 1.00% compared to
the average likelihood of increasing or initiating dividends.
Regarding personal income taxes, the direct effect on pay-
out appears to dominate the indirect effect with regard to a
firm’s propensity to pay dividends and the relative amount
of dividends due to negative and significant coefficients in
columns (1) and (3), respectively. Thus, firms appear to ac-
knowledge that an increase in personal income taxes makes
future dividends from corporate investments more attractive
for investors who would otherwise invest in less attractive in-
vestments such as bonds after receiving dividends in year t.
Therefore, firms invest more in year t, which, in turn, yields
lower dividends in year t**. To be more precise, a one-pp in-

27Chetty and Saez (2005), however, implicitly argue that the payout re-
sponse measured over these six quarters in 2003 and 2004 is sufficient to
validate long-run responses. Thus, they conclude that their results resemble
predictions of the old view. As outlined above, however, long-run payout
responses are technically difficult to measure in year t and year t+1. Hence,
I would be cautious when considering the conclusion of Chetty and Saez
(2005) and rather interpret my findings in the context of the new view in
period t.

28 As mentioned in footnote 7, this interpretation assumes that firms and
investors are in a tax jurisdiction where labour income and interest income
are taxed at the same rate (e.g., the U.S.). Thus, my interpretation of the re-
sults at first glance seems to be vague when considering other countries.
However, regarding the disproportionately high percentage of dividend-
paying firms in my sample which are headquartered in the United States
(17,786 out of 166,084 and 159,721 observations), they might have vastly
contributed to this result due to major personal income tax changes in the
U.S. in 2003 and 2013. Yet, there might also be an alternative explanation
especially for other tax jurisdictions than the U.S. which I recommend ex-
amining in future studies.

crease in personal income taxes reduces a firm’s propensity
to pay dividends by 0.32pp and the amount of dividends dis-
tributed by 0.05pp of lagged total assets with small (i.e., neg-
ative 0.48%) and large (i.e., negative 6.27%) relative effect
sizes, respectively. Due to a negative but insignificant coef-
ficient in column (2), an increase in personal income taxes
in year t, however, reveals that neither the direct effect nor
the indirect effect eventually dominates in terms of a firm’s
likelihood to increase or initiate dividends in year t.

Due to significant coefficients in columns (1), (2), and
(3), consumption taxes seem to impact all payout variables.
Also, the direction of the effect is consistent with my hypoth-
esis as all coefficients are positive. For example, a one-pp
rise in consumption taxes yields a 1.26pp (1.83pp; 0.09pp)
increase in a firm’s propensity to pay dividends (likelihood to
increase or initiate dividends; amount of dividends relative to
lagged total assets). Also, columns (5) and (6) suggest that
the relative effect size of a change in consumption taxes is
moderately large (7.43%) and considerably large (10.19%)
compared to the average likelihood to increase or initiate div-
idends and the average relative amount of dividends, respec-
tively. By contrast, column (4) suggests that the relative ef-
fect size of a change in consumption taxes compared to the
average likelihood to pay dividends at all is moderately small
(1.91%). These results provide evidence that a rise in con-
sumption taxes increases the tax wedge which, in turn, re-
duces corporate investment. Thus, more retained earnings
are available to be distributed as dividends which results in
a higher probability to pay, increase or initiate, and a larger
relative amount of dividends distributed in year t.

To conclude, my hypotheses based on the new view in
period t are only partially confirmed®’. My baseline results
mostly corroborate the neoclassical predictions on personal

291 also test for three alternative thresholds defining a substantial in-
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income taxes (i.e., direct effect mostly prevails) and con-
sumption taxes (i.e., positive and significant coefficients
across all payout variables). The neoclassical predictions on
corporate taxes and dividend taxes, however, are mostly not
supported by the baseline results. In the following, I there-
fore additionally test whether my hypotheses hold in the
context of (a) cash-rich firms and (b) dependent variables
with the new time identifier (t+1).

6. Extensions to the Baseline Model

6.1. Heterogeneity in Payout Responses due to Different Lev-
els of Cash Holdings

The first extension of my baseline model considers het-
erogeneity in payout responses arising from different levels
of cash holdings. As the average payout response only par-
tially confirms my initial hypotheses, I disentangle the aver-
age response and consider the payout behaviour of cash-rich
firms. According to neoclassical theory, cash-rich firms are
predicted to follow the new view because these firms have
sufficient cash holdings and retained earnings to finance new
projects or distribute dividends (Chetty and Saez, 2010). To
account for differences in cash holdings, I therefore define
the dummy variable High Cash which is equal to one if a firm
has a cash-to-total-assets ratio (Cash Holdings (TA)) larger
than the median value®® of this ratio in a given country-year.
Subsequently, I interact each tax variable with High Cash to
examine whether cash-rich firms exhibit a different payout
response compared to the average response of my baseline
regression.

I expect one of the two following outcomes to materialise.
First, the response of cash-rich firms could match predictions
of the new view in period t more closely than suggested by
the average response in my baseline regression. In this case,
I would expect the sign of the combined effect (i.e., average
effect plus marginal effect if firm is cash rich) of each tax
rate in this extension to have the same sign as the beta of the
respective tax rate as originally predicted for the baseline re-
gression. For instance, the combined effect of corporate taxes
on dividends is expected to be positive if a firm is cash rich,
i.e., the marginal effect is predicted to be positive and signifi-
cant offsetting the negative average effect. Second, cash-rich

crease for the variable Dividend Increase (t): 10%, 50%, and 100%.
When modifying this threshold, results are similar for DividendTax; , and
PersonallncomeTax; , in significance and magnitude. Results on other tax
rates, however, vary depending on the specification. Please refer to the Excel
file 3.1_DivIncr(t) THRESHOLDS_ (EDITED) for detailed regression results
on all alternative threshold definitions.

301 define the median value by country-year instead of country-industry-
year to rule out a potentially incorrect High Cash classification of firms. For
example, firms operating in cash-rich industries would be classified as cash-
poor firms if they have lower cash holdings compared to their industry peers.
This would occur even though these below-median firms have significantly
larger cash holdings compared to firms in cash-poor industries. Hence, I ab-
stract from industry-specific differences in cash reserves and solely acknowl-
edge that cash holdings might vary across countries.

firms might simply react more strongly compared to the aver-
age response. That is, the sign of the interaction term coeffi-
cient is expected to be positive (negative) if the coefficient of
the average response shows a positive (negative) sign. The
latter expectation is based on the findings of Alstadseeter et al.
(2017) showing that cash-rich firms respond more strongly
to a tax cut in dividends. Building on this result, I extend the
scope of Alstadseter et al. (2017) and include three further
tax rates.

Table 5 reports the results of my first baseline extension.
In column (2), the coefficients of the interaction terms>' sug-
gest that cash-rich firms react more strongly to a change in
personal income taxes and consumption taxes. In fact, cash-
rich firms exhibit an even higher and even lower likelihood
of increasing or initiating dividends if personal income taxes
and consumption taxes rise, respectively. To be more pre-
cise, cash-rich firms are 0.15pp less (0.16pp more) likely to
increase or initiate dividends if personal income taxes (con-
sumption taxes) increase by one pp which corresponds to
a total decrease (increase) in a firm’s likelihood to increase
or initiate dividends by 0.17pp (1.92 pp) if the firm is cash
rich. In relative terms, a change in personal income taxes
and consumption taxes implies that cash-rich firms respond
more strongly almost by factor 8 and by 9.08%°2, respec-
tively. However, a firm’s propensity to pay dividends and the
relative amount of dividends do not vary with different levels
of cash holdings among firms.

From these results, I infer that the predictions of Alstad-
saeter et al. (2017) (i.e., my second expected outcome) con-
ceptually hold for personal income taxes and consumption
taxes with respect to a firm’s likelihood to increase or initiate
dividends. The expected stronger payout response of cash-
rich firms to a change in dividend taxes, however, cannot be
inferred from my results. Also, cash-rich firms do not ap-
pear to respond more strongly to changes in corporate taxes.
Furthermore, the stronger response of cash-rich firms in the
event of a change in personal income taxes (here: direct ef-
fect) and consumption taxes confirms my first expected out-
come, too. In other words, the combined effect (i.e., aver-
age effect plus marginal effect if firm is cash rich) of both
tax rates in this extension has the same sign as the beta of
the respective tax rate as originally predicted for the base-
line regression. This suggests that cash-rich firms as a proxy

31please note that I only interpret the interaction effects since I am inter-
ested in whether cash-rich firms exhibit a different payout response com-
pared to the average response. Consequently, I disregard the average effects
in this regression as they are not examined by my research question in this
section.

32These numbers describe by how much more strongly cash-rich firms re-
act relative to the average effect. Therefore, I use the coefficients in col-
umn (2) of Table 5 and divide the combined effect (i.e., average effect plus
marginal effect if firm is cash rich) by the average effect and finally sub-
tract 1. A change in personal income taxes yields a stronger response of
cash-rich firms by factor 7.9319 or 793.19% (i.e., [((-0.1515) + (-0.0191))
/ (-0.0191) — 1] which is the same as the marginal effect dividend by the
average effect, i.e., [(-0.1515) / (-0.0191)] ). Similarly, a change in con-
sumption taxes causes a stronger response by 9.08% (i.e., 0.0908 = 0.1594
/ 1.7563 ) if the firm is cash rich.
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Table 5: Differences in Payout Behaviour due to Different Cash Holdings

This table displays the regression results showing whether different levels of cash holdings explain different payout responses between firms from 1999 to
2013. I define Dividend Payer (t) (column (1) and (4)), Dividend Increase (t) (column (2) and (5)), and Dividend Yield (t) (column (3) and (6)) as my
dependent variables. All independent variables are defined in the appendix in Table A.1. Additionally, I interact each tax rate with a dummy (High Cash)
equal to one if a firm has a cash-over-total-assets ratio (Cash Holdings (TA)) larger than the median in a given country-year. In columns (1), (2), and (3),
I include firm fixed effects and gdp-cluster-industry-year fixed effects. Please note that gdp-cluster is a placeholder representing a GDP-Growth-Ln(GDP per
Capita) cluster. In columns (4), (5), and (6), I include firm fixed effects and country-industry-year fixed effects. I report robust standard errors clustered at

the country level which are shown in parentheses.

*, ** and *** denote significance at the 10%, 5%, and 1% level, respectively.

(1) (2) (3) 4) (5) (6)
Corporate Tax -0.1096 -0.2414 -0.0111
(0.1743) (0.1888) (0.0165)
Corporate Tax -0.0880 -0.0553 -0.0078 -0.0731  -0.0912**  -0.0066
x High Cash (0.0807) (0.0535) (0.0049) (0.0857) (0.0431) (0.0047)
Dividend Tax 0.2632***  -0.2383* 0.0111**
(0.0672) (0.1241) (0.0053)
Dividend Tax -0.0472 -0.0127 -0.0044 -0.0483 -0.0169 -0.0045
x High Cash (0.0528) (0.0141) (0.0044) (0.0529) (0.0145) (0.0044)
Personal Income Tax -0.2852** -0.0191 -0.0539%**
(0.1181) (0.0953) (0.0135)
Personal Income Tax -0.0463 -0.1515%** -0.0001 -0.0496  -0.1247***  -0.0009
x High Cash (0.0599) (0.0409) (0.0041) (0.0618) (0.0353) (0.0039)
Consumption Tax 1.2762* 1.7563** 0.0852**
(0.6956) (0.6766) (0.0415)
Consumption Tax -0.0685 0.1594** 0.0073 -0.0705 0.1424** 0.0072
x High Cash (0.0905) (0.0638) (0.0059) (0.0980) (0.0589) (0.0058)
Observations 178,161 168,309 178,161 177,275 167,454 177,275
Controls Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
GDP-Cluster-Industry-Year FE Yes Yes Yes No No No
Country-Industry-Year FE No No No Yes Yes Yes
Adjusted R-squared 0.789 0.161 0.683 0.794 0.171 0.693

for new-view firms respond even more clearly in accordance
with the new view in period t compared to the average re-
sponse. Contrarily, the insignificant interaction coefficients
of Corporate Tax and Dividend Tax with High Cash suggest
that cash-rich firms respond statistically as strong as other
firms to a change in these tax rates and thus do not corrob-
orate predictions of the new view. This finding is surprising
given that cash-rich firms in particular are predicted to fol-
low the new view. As neoclassical theory does not explain this
result, other factors might have contributed to this outcome
or the interaction with High Cash does not proxy new-view
firms sufficiently well.

The results are very similar if I choose different fixed ef-
fects to rule out the concern that unobservable characteristics
in a certain country, specific industry, and a given year ex-
plain my results. Itherefore replace the GDP-Growth-Ln(GDP
per Capita)-cluster-industry-year fixed effect by country-
industry-year fixed effects in columns (4), (5), and (6) “to
absorb any previously omitted unobservable time-varying
characteristics at the [country-industry] level” (Jacob et al.,
2018, p.21). Similar to columns (1), (2), and (3), the level
of significance and the magnitude of the interaction coeffi-
cients remain mostly unchanged. The sole difference is that

the interaction of Corporate Tax and High Cash becomes
significant, too. Hence, I cannot fully rule out the concern
that “unobservable country-(industry)-year variables [are]
correlated with ...[the] tax changes” (Jacob et al., 2018,
pp.21-22)%. Yet, the negative coefficient of Corporate Tax
and High Cash in column (5) is again not in line with predic-
tions of the new view in period t which could therefore be
an alley of future research.

6.2. Impact on Payout in Year t+1

The second extension of my baseline model considers the
effect of tax rate changes in year t on payout in year t+1

33Also, my results are not robust to different definitions of High Cash. I
define cash-rich firms in two alternative ways: Firms have a level of cash
holdings (Cash Holdings (TA)) such that they are in (a) the top tercile and
(b) the top quartile of cash holdings in a given country-year. Across both
alternative definitions, interaction terms which show significant coefficients
when using the median as the High Cash threshold are not significant any-
more (and vice versa). Also, the dependent variables which are impacted by
a tax rate change differ depending on the High Cash threshold. Changing
the fixed effects also reveals an unclear picture of whether cash-rich firms
react significantly differently than the average response. Thus, the effect of
taxes on the response of cash-rich firms remains unclear.
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Table 6: Results on Payout in Year t+1

This table presents the regression results showing how a change in taxes affects corporate payout in the year after a tax rate change (i.e., year t+1) from
1999 to 2013. I define Dividend Payer (t+1) (column (1)), Dividend Increase (t+1) (column (2)), and Dividend Yield (t+1) (column (3)) as my dependent
variables. All independent variables are defined in the appendix in Table A.1. I include firm fixed effects and gdp-cluster-industry-year fixed effects in all three
regressions. Please note that gdp-cluster is a placeholder representing a GDP-Growth-Ln(GDP per Capita) cluster. I report robust standard errors clustered at

the country level which are shown in parentheses.

* ** and *** denote significance at the 10%, 5%, and 1% level, respectively.

(€D (2) (3)
Corporate Tax -0.1552 0.0925 -0.0084
(0.1464) (0.2794) (0.0104)
Dividend Tax 0.2296%** 0.0173 0.0164***
(0.0612) (0.1275) (0.0041)
Personal Income Tax -0.1693 0.5854***  -0.0330***
(0.1252) (0.1371) (0.0070)
Consumption Tax 1.1282* -0.0726 0.0861**
(0.5684) (0.8565) (0.0366)
Observations 142,493 137,004 142,493
Controls Yes Yes Yes
Firm FE Yes Yes Yes
GDP-Cluster-Industry-Year FE Yes Yes Yes
Adjusted R-squared 0.805 0.150 0.709

assuming that tax rates in a certain country are not altered
every year (i.e., tax regimes are quite stable). Generally, in-
vestigating the impact on payout in year t+1 seems to be rea-
sonable as some firms might respond to a tax rate change
with a certain delay (i.e., not in year t already) which, for
example, might depend on how much in advance a tax rate
change is announced before becoming effective and how flex-
ibly individual firms are able to react. As outlined in section
5, dependent variables with time identifier (t+1) also cover
short-run payout responses and are therefore expected to be
in line with predictions of the new view in period t.

Table 6 reports the results of this second baseline exten-
sion. Interestingly, the results are quite similar to the ones
of the baseline model suggesting that a tax rate change in
year t does not only impact payout in year t but also has an
effect on payout in year t+1. For instance, a change in the
corporate tax rate on average again does not affect corporate
payout. Surprisingly, the coefficient in column (2) becomes
positive and the coefficient in column (3) converges to zero.
This matches predictions of the new view in period t more
closely than in the baseline regression but cannot be fully
corroborated due to insignificant coefficients. Furthermore,
the results of this extension confirm that an increase in divi-
dend taxes in year t on average yields a higher propensity to
pay dividends in the short run (i.e., in year t (baseline) and
year t+1 (extension 2)) as the coefficient of Dividend Tax in
year t+1 has a similar significance and magnitude as in year
t. Also, the coefficient in column (3) is positive but, unlike
in the baseline regression, highly significant suggesting that
a one-pp rise in dividend taxes in year t increases the relative
amount of dividends in year t+1 by 0.02pp of lagged total
assets. This implies that firms pay a larger relative amount
of dividends with a certain delay (i.e., in year t+1 (exten-

sion 2)) but not in the immediate aftermath of a change in
dividend taxes (i.e., year t (baseline)). The positive coeffi-
cient, however, again can neither be explained by the new
view nor by empirical studies evidencing a negative relation
between dividend taxes and payout and thus could be an al-
ley of future research. Contrary to the baseline results, the
positive but insignificant coefficient in column (2) suggests
that a change in dividend taxes on average does not change
a firm’s likelihood to increase or initiate dividends in year
t+1. This implies that a change in dividend taxes only has an
immediate impact (i.e., in year t (baseline)) on a firm’s like-
lihood to increase or initiate dividends. Thus, the effect of
Dividend Tax on Dividend Increase (t+1) is consistent with
the “dividend tax neutrality” (Chetty and Saez, 2010, p.5).
Regarding personal income taxes, the results in column
(1) and (2) differ from the baseline case. The coefficient in
column (1) remains positive but becomes insignificant sug-
gesting that the direct effect does not dominate the indirect
effect in terms of a firm’s propensity to pay dividends in year
t+1; in other words, the direct effect on the variable Dividend
Payer dominates the indirect effect only in the year when a
change in personal income taxes occurs (i.e., year t (base-
line)). Contrary to the baseline model, the indirect effect ap-
pears to prevail over the direct effect in column (2). Hence,
higher labour costs incurred due to higher personal income
taxes incentivise more firms to increase or initiate dividends
in the year after the tax rate change (i.e., year t+1) imply-
ing that investing in corporate projects becomes increasingly
unattractive compared to distributing dividends in year t+1.
Only the coefficient in column (3) is similar to the baseline
result: An increase in personal income taxes in year t yields
a lower relative amount of dividends in year t+1 which val-
idates the prevailing direct effect on the variable Dividend
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Yield in the short run (i.e., year t (baseline) and year t+1
(extension 2)).

Similar to the baseline results, a rise in consumption taxes
increases a firm’s propensity to pay and the relative amount
of dividends in year t+1, too, which is again in line with
the predictions of the new view in period t. This implies
that higher consumption taxes increase the relative attrac-
tiveness of directly distributing dividends in the short run
(i.e., in year t and year t+1) instead of investing in corporate
projects whose profit margins diminish due to the increased
tax wedge. By contrast, an increase in consumption taxes on
average yields no effect on a firm’s likelihood to increase or
initiate dividends in year t+1 (i.e., coefficient is insignificant
but, surprisingly, negative). Thus, firms only appear to ex-
hibit a higher likelihood to increase or initiate dividends in
the immediate aftermath of a tax rate change (i.e., in year t
(baseline)).

7. Robustness of Baseline Results

I test the robustness of my baseline results in two ways.
First, I change the specification of my fixed effects to test
whether my baseline results still hold when choosing alter-
native control groups. I therefore compare firms within
the same country-group-industry-year where each coun-
try is clustered by (a) geographic region (i.e., countries
are matched to one of the seven world regions defined
by the World Bank) and (b) income group (i.e., countries
are matched to one of the four income groups defined by
the World Bank) instead of grouping countries by economic
similarity in terms of the GDP level and GDP growth rate.
Hence, I replace GDP-growth-Ln(GDP per capita)-cluster-
industry-year fixed effects by (a) region-industry-year and
(b) income-group-industry-year fixed effects. Second, I in-
clude the three additional country-level variables Openness,
Deficit, and Interest Payments in control vector I';, **. This
allows me to rule out the concern that at least one of these
newly included variables is a significant determinant of a
firm’s payout behaviour (i.e., omitted variable bias occurs)
and that “nearly any desired result can be obtained” (Jacob
and Jacob, 2013b, p.1259) when selecting a different set of
control variables.

Table 7 presents the results of my baseline regression
when including alternative fixed effects. Clustering coun-
tries by geographic regions (columns (1) to (3)) and income
groups (columns (4) to (6)) mostly yields different results
compared to the baseline model. All coefficients either vary
in their magnitude or significance or both with the exception
of dividend taxes and personal income taxes in columns (1)
and (4) and columns (3) and (6), respectively. Surprisingly,
the coefficient of Corporate Tax is significant implying that
a rise in the corporate tax rate negatively impacts a firm’s

34Government Debt is still excluded due to substantially poorer coverage
of merely 196,656 observations compared to Openness, Deficit, and Interest
Payments with a coverage of 304,225, 269,554, and 279,996 observations,
respectively.

likelihood to increase or initiate dividends (clustered by re-
gion), relative amount of dividends (clustered by region),
and propensity to pay dividends in year t (clustered by in-
come). This finding stands in stark contrast to the results
of my baseline regression suggesting that corporate taxes do
not affect corporate payout. Despite clustering countries by
region, the coefficients of Dividend Tax are mostly similar to
the baseline model. Dividend Tax, however, shows different
coefficients in columns (5) and (6) if countries are grouped
by income. Regarding personal income taxes, income-group-
industry-year fixed effects reveal results which are mostly
similar to the baseline model whereas region-industry-year
fixed effects show a similar magnitude of coefficients in
columns (1) and (3) but a different significance of the coeffi-
cient in column (1). Interestingly, a change in consumption
taxes hardly plays a role in payout decisions when different
fixed effects are employed. Even though the magnitude of
coefficients in columns (3), (4), and (6) is comparable to the
baseline model, they are not significant in alternative speci-
fications. This finding stands in stark contrast to the baseline
results as this robustness test suggests that consumption
taxes do not affect payout.

Table 8 presents the results of my baseline regression
when including additional country-level variables in control
vector I ,. The results of this model only partially resem-
ble the results of the baseline model. Consistent with the
baseline specification, an increase in consumption taxes pos-
itively impacts all payout variables while coefficients are sim-
ilarly significant with similar magnitude. Also, the effect of a
change in personal income taxes on Dividend Yield (t) is in
line with the baseline model due to a negative and highly sig-
nificant coefficient of similar magnitude. However, the coeffi-
cient of Personal Income Tax on Dividend Payer (t) becomes
insignificant and even slightly positive suggesting that per-
sonal income taxes do statistically not impact a firm’s propen-
sity to pay dividends which is not in line with my baseline re-
sults. Regarding dividend taxes, the results differ vastly from
my baseline regression as no coefficient is significant at all
with a negative sign across all payout variables. Even though
two coefficients of Corporate Tax in columns (1) and (2) be-
come positive, a change in corporate taxes does again not
impact corporate payout which is consistent with my base-
line model.

Overall, the majority of baseline results are not robust to
the inclusion of different fixed effects and additional country-
level controls. The only result appearing to be fully robust to
alternative regression specifications is the coefficient of Per-
sonal Income Tax on Dividend Yield (t) which, in most cases,
is highly significant with a similar magnitude as in the base-
line model. By contrast, the effect of other tax variables on
payout highly depends on the specification and thus, I derive
the following two conclusions. First, the choice of the fixed
effect is critical. Second, I cannot rule out the fact that my
baseline model might suffer from omitted variable bias even
though the low coverage of newly included variables reduces
the number of observations by one quarter compared to the
baseline model.
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Table 7: Robustness of Main Results to Different Fixed Effects

This table shows the results of my baseline regression from 1999 to 2013 when employing different fixed effects. I replace gdp-cluster-industry-year fixed
effects by region-industry-year fixed effects and income-group-industry-year fixed effects in columns (1) to (3) and columns (4) to (6), respectively. Both
region and income-group follow definitions provided by the World Bank. The dependent variables are Dividend Payer (t) (column (1) and (4)), Dividend
Increase (t) (column (2) and (5)), and Dividend Yield (t) (column (3) and (6)). All independent variables are defined in the appendix in Table A.1. I report

robust standard errors clustered at the country level which are shown in parentheses. *, **, and *** denote significance at the 10%, 5%, and 1% level,
respectively.
(1) (2) (3) (4) (5) (6)
Corporate Tax -0.3664 -0.4609***  -0.0205*  -0.4678** 0.0514 -0.0164
(0.2219) (0.1519) (0.0120) (0.1857) (0.2342) (0.0149)
Dividend Tax 0.2127%***  -0.2738*** 0.0049 0.2126***  -0.0794  0.0144***
(0.0637) (0.0745) (0.0046) (0.0606) (0.0702) (0.0040)
Personal Income Tax -0.3613 0.1851 -0.0437**  -0.4662***  0.3108  -0.0499***
(0.2204) (0.1154) (0.0167) (0.1535) (0.2139) (0.0141)
Consumption Tax 0.7412 0.9547 0.0762 1.2320 1.4067* 0.0760
(0.8597) (0.6903) (0.0494) (0.9408) (0.7678) (0.0635)
Observations 166,133 159,769 166,133 166,131 159,770 166,131
Controls Yes Yes Yes Yes Yes Yes
Firm FE Yes Yes Yes Yes Yes Yes
GDP-Cluster-Industry-Year FE No No No No No No
Region-Industry-Year FE Yes Yes Yes No No No
Income-Group-Industry-Year FE No No No Yes Yes Yes
Adjusted R-squared 0.795 0.160 0.697 0.794 0.154 0.694

Table 8: Robustness of Main Results to Additional Country-level Controls

This table shows the results of my baseline regression from 1999 to 2013 when employing additional country-level variables in control vector I .. Tadditionally
include variables Openness, Deficit, and Interest Payments. Variable Government Debt is still omitted due to poor coverage. The dependent variables are
Dividend Payer (t) (column (1) and (4)), Dividend Increase (t) (column (2) and (5)), and Dividend Yield (t) (column (3) and (6)). All independent variables
are defined in the appendix in Table A.1. I include firm fixed effects and gdp-cluster-industry-year fixed effects in all three regressions. Please note that
gdp-cluster is a placeholder representing a GDP-Growth-Ln(GDP per Capita) cluster. I report robust standard errors clustered at the country level which are

shown in parentheses. *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively.
(1) (2) (3)
Corporate Tax -0.1404 -0.2452 -0.0157
(0.1696) (0.1833) (0.0165)
Dividend Tax 0.2468***  -0.2299** 0.0084
(0.0654) (0.1103) (0.0056)
Personal Income Tax -0.2838** -0.1406 -0.0533***
(0.1136) (0.0982) (0.0131)
Consumption Tax 1.0857 1.8513***  0.0797**
(0.6712) (0.6872) (0.0391)
Observations 158,184 152,337 158,184
Controls Yes Yes Yes
GDP-Cluster-Industry-Year FE Yes Yes Yes
Adjusted R-squared 0.799 0.164 0.703

8. Conclusion

This thesis examines the effect of corporate taxes, divi-
dend taxes, personal income taxes, and consumption taxes
on corporate payout. For this, I use a cross-country panel
consisting of 115 countries over the period 1999 to 2013
and run linear regressions of the four taxes on three depen-
dent variables measuring dividend payout. The results of the
baseline regression and subsequent extensions only partially

confirm the predictions of the new view on short-run payout
responses (i.e., responses in period t in the simplified single-
period model). Inconsistent with initial hypotheses, corpo-
rate taxes on average do not impact dividend payout in the
same year when a tax rate change becomes effective in terms
of frequency and relative amounts, but a change in dividend
taxes yields a statistically significant payout response even
though the magnitude is small and the direction of the ef-
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fect depends on the payout variable. Consistent with initial
expectations, changes in personal income taxes (here: direct
effect) and consumption taxes trigger mostly large payout
responses. Also, cash-rich firms respond more strongly to
a change in personal income taxes, consumption taxes, and
(only on the country-industry level) corporate taxes. The re-
sults on payout one year after a tax rate change are mostly
similar to the baseline model.

The analysis of this thesis, however, is limited to only
one aspect of corporate payout (i.e., dividends) and only one
part of neoclassical theory (i.e., new view in period t). In
order to draw clear policy recommendations, it is therefore
imperative to adopt a more holistic view by extending the
scope of this thesis and investigating alternative explanations
for the findings which are not in line with neoclassical the-
ory. One way of achieving this could involve the analysis
of total payout (i.e., share repurchases plus dividends; see
also Chetty and Saez, 2005) since (i) share repurchases have
gained importance over the last decades in the U.S. and Eu-
rope (Von Eije and Megginson, 2008) and (ii) share repur-
chases and dividends are, to a certain extent, interchange-
able payout channels implying that a tax rate change might
lead to dividends being substituted by share repurchases and
vice versa (Chetty and Saez, 2005). In this context, the
relative taxation of dividends vis-a-vis capital gains has to
be considered, too (see also Jacob and Jacob, 2013a). An-
other way of deriving holistic implications involves the con-
sideration of agency models (e.g., Chetty and Saez, 2010)
which might also explain some deviations of the regression
results from neoclassical predictions. Thus, I would recom-
mend incorporating ownership structure or alternative prox-
ies for shareholder conflicts (Jacob and Michaely, 2017) and
agency issues (Chetty and Saez, 2005; Jacob and Michaely,
2017) into the regression model. Signalling models (e.g.,
Gordon and Dietz, 2006) could be taken into account, too, for
which many executives would have to be interviewed to test
whether a payout response deviating from neoclassical pre-
dictions might be interpreted as a “signal of managerial con-
fidence in future earnings” (Jacob and Jacob, 2013a, p.188).
Finally, it is possible that firms anticipated a change in taxes
in previous periods such that the response in year t rather
matches the predictions of the new view in period t+1 and is
therefore a question worth being pursued in future research.

Overall, the results of this thesis should be regarded as
a starting point and give managers, shareholders, and pol-
icy makers a first impression of how taxes impact corporate
payout decisions which are, nonetheless, still to be comple-
mented by future research.
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Abstract

In this thesis, I present empirical evidence on the effect of personal taxes on firm-level investment. Exploiting a cross-country
panel that consists of 40,608 firms from a total of 115 countries in the period 1999-2013, I employ a linear regression model
in which I regress five different definitions of the personal tax wedge against capital investment of firms. I find that the
average investment response of firms strongly depends on the definition of the personal tax wedge. My baseline regression
reveals that, if the pure personal tax rate increases, firms on average show a positive capital investment response. That is, if
firms cannot shift the economic burden of personal taxes to other stakeholders, an increase in personal taxes, ceteris paribus,
increases the factor price of labour and thus exerts higher pressure on corporate profits. Profit-maximising firms therefore
counteract this pressure by (partially) substituting the more expensive input factor labour by capital, increasing their capital
investment. This effect, however, does not hold true for alternative definitions of the personal tax wedge that additionally
include social security contributions. Likewise, I obtain mixed results when testing for cross-sectional variation in capital
investment responses arising from differences in relative market power, the ability to substitute input factors, and financial
constraints. In this context, my thesis provides empirical evidence on the effect of personal taxes on investment behaviour at
the firm level and thus adds to current literature, which mainly considers the effect of personal taxes on aggregate investment,
economic growth, and total factor productivity.

Keywords: investment; personal tax; tax wedge

et al., 2018) on investment behaviour of firms'. The discus-
sion on the effect of personal taxes on firm-level investment,
however, is much more fragmentary and less diverse. That
is, although previous literature on personal taxes does exist,
evidence on the direct effect of personal taxes on firm-level
investment is surprisingly scarce. For instance, one set of
studies exclusively relies on macroeconomic data and draws
unclear conclusions about the effect on aggregate invest-

1. Introduction

Over the past decades, a substantial amount of litera-
ture has evolved which extensively discusses the effect of
corporate taxes (e.g., Auerbach et al., 1983; Djankov et al.,
2010; Dobbins and Jacob, 2016; Giroud and Rauh, 2017;
Ljungqvist and Smolyansky, 2016), payout taxes (e.g., Al-
stadsater et al., 2017; Becker et al., 2013; Chetty and Saez,
2010; Yagan, 2015), and consumption taxes (e.g., Jacob

1Dobbins and Jacob (2016) provide a comprehensive overview of studies
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Jacob, my first supervisor, for his extensive guidance and structured advice
during this research project. In particular, I would like to thank him for
proposing the topic “Personal Taxes and Corporate Investment”, providing a
pre-edited sample of core data, and engaging in fruitful discussions with me
that altogether helped me successfully write this thesis. [ would also like to
express my deep gratitude to Dr. Antonio De Vito, my second supervisor, for
his far-reaching support through insightful deep-dive sessions on specialised
statistical software and meaningful intellectual discussions that shaped the
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Herold, Ralf Herold, and Dr. Tobias Wagner for their helpful comments and
suggestions that improved the quality of this thesis.
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macro level (e.g., Auerbach et al., 1983; Djankov et al., 2010) and the direct
effect on firm-level investment (e.g., Dobbins and Jacob, 2016; Ljungqvist
and Smolyansky, 2016). Similarly, the effect of payout taxes on investment
levels in the light of agency issues (e.g., Alstadszter et al., 2017; Chetty and
Saez, 2010) and the allocation of investment between cash-rich and cash-
poor firms (e.g., Alstadseeter et al., 2017; Becker et al., 2013; Yagan, 2015),
although with mixed empirical results, has been extensively investigated.
Also, Jacob et al. (2018) provide recent empirical evidence on the effect of
consumption taxes on firm-level investment which complements previously
inconclusive findings on the macroeconomic level (e.g., Alesina et al., 2002;
Arnold et al., 2011).
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ment and economic growth2 (e.g., Lee and Gordon, 2005).
Other studies, by contrast, attempt to complement these
macro-level findings by estimating the effect on total factor
productivity (e.g., Arnold et al., 2011) or by employing the
q approach (e.g., Alesina et al., 2002) but they show no sta-
tistically significant, robust effect on firm-level investment®.
Thus, it appears that previous studies have unclear implica-
tions for investment responses on the firm level which creates
a substantial gap in tax research.

This neglect is astonishing when considering the impor-
tance of personal taxes for fiscal budgets and their practical
relevance for input factor decisions of firms. First, personal
taxes are a major source of tax revenues on the fiscal level and
on average contribute to approximately 25% of tax revenues
in OECD countries (Organisation for Economic Co-operation
and Development, 2017) which emphasises the significance
of personal taxes as a policy instrument. Second, and even
more severely, if firms cannot fully pass the economic bur-
den of personal taxes onto other parties (e.g., Dyreng et al.,
2017; Jacob et al., 2018), personal taxes can, ceteris paribus,
distort input factor decisions on the firm level, and thus the
optimal factor mix of firms by increasing the factor price of
labour. When abstracting from productivity differences be-
tween factors, this ‘price increase’ is expected to reduce the
attractiveness of the input factor labour in favour of capital,
and thus likely creates pressure to substitute the more ex-
pensive input factor labour by additional capital. Consider-
ing these substantial implications, it is imperative for policy
makers and managers to understand the effect of personal
taxes on investment behaviour of firms.

This thesis therefore aims at bridging this gap by pro-
viding empirical evidence on the effect of personal taxes on
firm-level investment and the magnitude of this effect. For
this, my empirical analyses exploit a cross-country panel of
non-financial, non-transportation, non-telecommunication,
non-utility firms in 115 countries over the 1999-2013 period.
My estimation strategy is threefold. First, following Jacob
et al. (2018), I employ linear probability models to identify
“country-level determinants of ...[personal] tax changes”
(Jacob et al., 2018, p.15). Second, my baseline model in
which I account for “observable firm and [country-level]
characteristics” (Alstadsater et al., 2017, p.75) and include
firm- and deficit-interest-payment-cluster-industry-year fixed
effects estimates the average investment response. Third, I
test for cross-sectional variation in investment responses to
analyse the impact of differences in firm characteristics such
as market power, the ability to substitute input factors, and
financial constraints on the responsiveness of capital invest-

2Lee and Gordon (2005) admit that “the aggregate information reported
...is insufficient to draw ... conclusion[s] about ... links between [personal]
tax[es] ...and growth” (p.15).

3Arnold et al. (2011) investigate the effect of personal taxes on industry-
level entrepreneurial activity and total factor productivity but fail to do so
for firm-level investment. Likewise, Alesina et al. (2002) “estimate a q type
of investment equation that links investment to ... profits” (p.572) but they
solely rely on aggregate measures such as “investment of the business sector
...[and] capital stock” (p.578).

ment. In all tests, five different definitions of the personal
tax rate (i.e., one pure personal tax rate and four different
specifications including social security contributions) are em-
ployed to investigate whether investment responses of firms
differ depending on the definition of the personal tax wedge.

Interestingly, my empirical results reveal exactly that. In
my baseline regression, for instance, I can only validate a
positive average response of capital investment for the pure
personal tax rate (although the effect size is smaller than
for other taxes) whereas specifications including social se-
curity contributions are statistically insignificant. This find-
ing supports my proposed mechanism of firms facing higher
pressure to substitute labour by capital but does not con-
firm predictions about social security contributions having
the same economic effect on factor decisions as the pure tax
rate. This picture slightly changes when testing for cross-
sectional variation in investment responses where results are
partially ambiguous. For instance, if firms have low market
power, investment reacts more strongly compared to the av-
erage investment response in case of the pure personal tax
rate, but the response mostly reverses (i.e., investment re-
acts less strongly) when including social security contribu-
tions in the personal tax wedge. Results also appear to be
mixed when testing for differences in the ability to substitute
labour by capital and financial constraints. Hence, my thesis
contributes to the literature by providing empirical evidence
on the direct relationship between the personal tax rate and
investment behaviour at the firm level, and thus illustrates
the impact of policy instruments on input factor decisions and
the optimal factor mix of firms.

The remaining sections of this thesis are structured in
the following way. In section 2, the theoretical background
is explained based on which I derive four hypotheses (i.e.,
one predicting the average investment response and three
investigating cross-sectional variation in capital investment
responses). Section 3 presents my data, methodology, and
summary statistics on variables used in my baseline regres-
sion. Furthermore, I conduct a pre-analysis and check for
sufficient variation in personal tax changes in section 4 on
which I base my baseline regression and subsequent analy-
ses of cross-sectional variation in section 5. I then test for
robustness of my baseline results in section 6. Finally, my
conclusion is presented in section 7.

2. Theoretical Background: Model and Hypothesis De-
velopment

2.1. Optimal Input Factor Mix and Personal Tax Wedge
According to economic theory, the “production function
[of firms] has two input factors, capital and labor” (Dobbins
and Jacob, 2016, p.8). However, since firms are an invest-
ment vehicle of their shareholders (Alstadsater and Jacob,
2012), and thus are assumed to be profit-maximising enti-
ties, they must decide on the optimal mix of these factors to
produce a certain output at minimal costs. Following Pindyck
and Rubinfeld (2018), the optimal factor mix is determined
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by the two criteria (a) factor productivity* and (b) price per
input factor unit. That is, the more output a factor can pro-
duce within a certain time (i.e., the more productive a factor)
for given factor price, the higher its contribution for the gen-
eration of revenues, and thus the more attractive the input
factor. Likewise, the lower the price of a factor for a given
productivity level, the higher the profit margin per unit of
output produced, and hence the more attractive the input
factor. Thus, when combining these two criteria, the optimal
factor mix is a function of the relative attractiveness of input
factors which can be expressed as the ratio of factor produc-
tivity to factor price’.

Personal taxes, however, can change the optimal factor
mix of firms. As illustrated in Figure 1, the “tax wedge the-
ory” (Becker et al., 2013, p.5; see also Alstadsater et al.,
2017; Jacob et al., 2018) predicts that personal taxes drive a
wedge between the factor price of labour paid by firms (c;)
and the net wage of employees (w,). Thus, unless firms

“4Factor productivity is defined as the level of output which can be pro-
duced by an input factor within a given time.

SFor simplicity, I assume that the relative attractiveness of input factors
only changes the mix of input factors whereas the level of output generated
remains constant irrespective of the input factor mix. I also abstracted from
other determinants of factor decisions, e.g., the availability of input factors
(which is assumed to be reflected in the price) and the state of technology.

Labour for Capital

can fully shift “the economic burden, or incidence, [of per-
sonal taxes]” (Dyreng et al., 2017, p.6) to consumers via
higher market prices or workers via lower net wages (Dyreng
etal., 2017), personal taxes increase the factor price of labour
while labour productivity remains constant®, and thus they
reduce the attractiveness of labour relative to capital.

Consequently, personal taxes exert pressure on profits,
and thus force profit-maximising firms to substitute the rel-
atively more expensive factor labour by additional capital’.
Figure 2 visualises this relationship by using a simplified P&L
structure which assumes firms to bear part of the personal
tax incidence.

To conclude, personal taxes are expected to discriminate
the input factor labour in favour of the input factor capital,
and thus distort input factor decisions of firms®. Based on

6 expect the higher factor price of labour not to be offset by increases
in labour productivity (although this could be assumed in a world without
personal taxes in which employees are paid a wage equal to their marginal
productivity (Pindyck and Rubinfeld, 2018)). Thus, ceteris paribus, a tax-
induced increase in the factor price of labour results in a lower attractiveness
of labour relative to capital.

71 assume that labour and capital are, on the margin, substitutes (e.g.,
Dyreng et al., 2017; Jacob et al., 2018). Please refer to hypothesis one in
section 2.2 for a detailed explanation. For a substitution response to be eco-
nomically reasonable, capital is also assumed to have a productivity greater
than zero, and firms are assumed to keep their output level constant.

81n a wider sense, personal taxes can be a variable not just including the
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this, I develop four hypotheses on the investment behaviour
of firms. In hypothesis one, I predict the average investment
response. Hypotheses two, three, and four, then extend the
scope of my model and capture cross-sectional variation in
the responsiveness of capital investment.

2.2. Hypothesis Development
Hypothesis 1: On average, if the economic bur-
den of a personal tax increase is (partially) borne
by firms, capital investment responds ambigu-
ously.

Assuming supply and demand to be neither fully elastic nor
inelastic (e.g., Jacob et al., 2018) in the labour market, the
economic burden of a personal tax increase is shared between
firms and employees (i.e., higher labour costs for firms, lower
net wage for employees). At the firm level, this exerts higher
pressure on profits, and thus forces profit-maximising firms
to reduce costs incurred by their deployment of input factors.
That is, since an increase in personal taxes directly increases
the factor price of labour, firms would unambiguously try to
reduce their labour intake in their production function to cut
costs.

The effect on capital investment, however, is ambiguous
and depends on whether labour and capital, on the margin
(i.e., in marginal factor decisions), are complements or sub-
stitutes. Two channels of investment responses are hence
plausible (e.g., Dyreng et al., 2017). First, like for labour,
firms can respond by reducing their capital investment, too.
This would allow them to “maintain their [optimal] mix of in-
put factors” (Dobbins and Jacob, 2016, p.4), for which labour
and capital, even on the margin, would be treated as com-
plements. Second, by contrast, capital investment of firms
could increase. Such a response would occur if labour and
capital could be partially (i.e., to a small extent) substituted
despite their overall complementarity, and thus both input
factors would be substitutes on the margin. The second chan-
nel is empirically supported by Dyreng et al. (2017) showing
that labour and capital, on the margin, can be substitutes.

Hypothesis 2: After an increase in personal taxes,
firms with low market power vis-a-vis their stake-
holders show greater responsiveness in capital
investment.

Intuitively, the personal tax incidence borne by firms (and
ultimately shareholders) likely determines the magnitude of
investment responses. That is, the greater (smaller) the eco-
nomic burden on firms, the greater (smaller) the pressure
to substitute labour by capital. Yet, previous literature sug-
gests that “shareholders might not bear the entire economic

top marginal income tax rate on labour income, 7°, but also labour-related
costs such as social security contributions which drive a wedge between w,
and w,,. These additional labour costs are effectively part of the gross wage,
wg,, and thus are expected to have the same economic effect on firm-level
investment as the pure personal tax rate 7. Although these labour-related
costs are no taxes, social security contributions will nevertheless be included
in the definition of the personal tax wedge in section 5 to check whether they
empirically have the same economic effect on investment.

burden [of personal taxes] ...[since a] firm’s market power
allows it to pass the [economic] burden to [stakeholders
such as suppliers,] workers, or consumers” (Dyreng et al.,
2017, p.1), and thus cross-sectional variation in investment
responses may result from differences in the relative market
power of firms. Since market power is a function of mar-
ket demand elasticity (in the case of consumers) and supply
elasticity (in the case of suppliers/workers) (e.g., Dyreng
etal., 2017; Jacob et al., 2018), I present two cases in a par-
tial equilibrium setting which show the relationship between
market power and firm-level investment’. Also, the model
of the profit-maximising firm is assumed (e.g., Dyreng et al.,
2017) that will try to reduce the economic burden imposed
by personal taxes.

Conceptually, it does not matter onto which stakeholder
the economic burden of a personal tax increase is shifted as
investment responses of firms are unambiguous in both sub-
sequent cases. First, I consider the market power of firms
vis-a-vis their employees on the cost side'’. In this case, mar-
ket power depends on the elasticity of labour supply (e.g.,
Dyreng et al., 2017; Jacob et al., 2018). That is, the more
elastic (inelastic) the labour supply (e.g., due to high (low)
education levels (e.g., Dyreng et al., 2017; Fuest et al., 2018)
and correspondingly high (low) labour mobility), the lower
(higher) the ability of firms to freely set wages, and thus the
lower (higher) their ability to shift the economic burden of
a personal tax increase to employees''. Subsequently, this
exerts higher (lower) pressure on profits, and thus increases
the (creates less) pressure to substitute the more expensive
factor labour by capital which, in turn, causes investment of
firms with low (high) market power to respond more (less)
strongly'? than the average investment response. Second, I
consider the market power of firms vis-a-vis their consumers
which is a function of the elasticity of market demand on their
revenue side (e.g., Dyreng et al., 2017; Jacob et al., 2018).
That is, the more (less) elastic the market demand (e.g.,
due to the availability of substitutes (Jacob et al., 2018), the
lower (higher) the ability of firms to shift the economic bur-
den of a personal tax increase to consumers through higher
prices. Thus, this translates into higher (creates less) pres-
sure to substitute labour by capital and is expected to result
in a stronger (weaker) investment response if firms have low
(high) market power.

°For illustration purposes, I abstract from a general equilibrium setting
in which “firm[s] can simultaneously shift [their personal] tax burden to
[multiple stakeholders]” (Dyreng et al., 2017, p.10).

OLiterature suggests that “results are essentially the same [if] firms
...pass on taxes to ...suppliers through [lower] input ... prices instead of
passing [them] on ... to workers [through lower wages]” (Jacob et al., 2018,
p-2).

1 Alternatively, it could be argued that the power of unions influences the
ability of firms to shift the economic burden to employees. However, union
power belongs to the discipline of bargaining literature (e.g., Katz, 1993)
from which I abstract in my model for simplicity.

12The meaning of more strongly depends on the direction of the average
effect. That is, if the average effect is positive (negative), I expect a stronger
increase (decrease) in investment if firms have low market power.
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Hypothesis 3: After an increase in personal taxes,
capital investment responds more strongly if
firms can more easily substitute labour by capi-
tal.

As illustrated in Figure 2, an increase in personal taxes
exerts stronger pressure on firms to substitute the more ex-
pensive input factor labour by capital'®. This does, however,
not imply that firms are able to substitute both factors to the
same extent, and thus cross-sectional variation in investment
responses across firms may arise from differences in the abil-
ity to substitute labour by capital (e.g., Dyreng et al., 2017).
Intuitively, the degree of input factor substitutability is influ-
enced by two elements: (a) The knowledge-intensity of the
factor labour, and (b) the importance of labour and capital
for the generation of value added (i.e., output produced).

First, knowledge-intensive labour tasks such as R&D are
difficult to automate, and thus the more knowledge-intensive
the factor labour, the more difficult it is to substitute labour
by capital. Consequently, firms for which knowledge and
innovation (i.e., R&D) are core of their business model
(e.g., consultancies or pharma firms) have a high share of
knowledge-intensive labour, and thus have a lower ability
to substitute labour by capital, if they can do so at all'.
Second, the higher the importance of an input factor in a
firm’s production function, and hence for the generation of
value added (i.e., output produced), the more difficult it is
to substitute this input factor if output is to be kept constant.
For example, if labour (capital) is highly productive and
therefore important for the generation of output, the same
output can, if at all, only be produced by a disproportionally
high amount capital (labour), and hence it is relatively more
difficult (easier) to be substituted by labour by capital on
the margin. Thus, the greater a firm’s ability to substitute
labour by capital, the more strongly investment is expected
to respond since firms likely show a smaller (greater) sub-
stitution response towards capital if labour is knowledge
intensive (capital is important for the generation of output).

Hypothesis 4: After an increase in personal taxes,
financially constrained firms which strongly rely
on internal cash flows for investment exhibit a
more negative investment response.

Besides differences in relative market power and the
ability to substitute input factors, previous literature sug-
gests that cross-sectional variation in investment responses
can also result from “differences in the availability of inter-
nal funds” (Jacob et al., 2018, p.5) across firms. That is, if
internal cash flows are the marginal source of finance, in-
vestments in cash-constrained firms (i.e., firms with limited

13This assumes labour and capital to be substitutes on the margin.

4In this hypothesis, I abstract from recent technological developments in
the field of artificial intelligence. These developments potentially increase
the ability of firms to automate knowledge-intensive labour since they in-
creasingly enable the factor capital to perform knowledge-intensive tasks
(e.g., in R&D). Thus, knowledge-intensive labour could be more easily au-
tomated (and substituted by capital) in future.

internal resources) are likely more prone to decreases in in-
ternal cash flows than investments in cash-rich firms (i.e.,
firms with abundant internal resources) (e.g., Dobbins and
Jacob, 2016; Faulkender and Petersen, 2012; Fazzari et al.,
1988; Jacob et al., 2018). Thus, assuming firms to bear part
of the personal tax incidence, an increase in personal taxes
is predicted to reduce profits, and thus internal after-tax
cash flows and investments more strongly if firms are cash-
constrained and “heavily [rely] on internally generated cash
flows for investment” (Jacob et al., 2018, p.5). Thus, despite
higher pressure to substitute labour by capital, this effect is
expected to translate into a more negative investment re-
sponse of financially constrained firms'® as their availability
of internal resources is more strongly affected.

3. Data, Methodology, and Summary Statistics

The data used in this thesis have largely been provided
by the WHU chair of Business Taxation and stem from four
main data sources. First, firm-level data on listed companies
over the 1997-2013 period were retrieved from the Com-
pustat Annual North America and Global database. Second,
tax policy data were extracted from handbooks published
by major auditing and tax advising firms such as KPMG,
PwC, Ernst & Young, and Deloitte and are available from
1999-2013. Third, information on macroeconomic and gov-
ernance indicators follow the World Bank definition and
originate from the World Bank website for all countries in
the dataset. Fourth and finally, I retrieved additional data on
personal taxes from the OECD tax database from 2000-2013
to include social security contributions in the definition of
the personal tax wedge.

Prior to merging datasets, I amended the data in sev-
eral ways to increase the coverage of some variables. For
instance, I added new data on Tobin’s q with higher cover-
age across firms which were provided by the WHU chair of
Business Taxation'®. Similarly, I replaced missing data en-
tries of the variable Income Group to increase the number of
observations for the income-group-cluster used in robustness
tests of my thesis'’. In addition to the datasets provided by

15This corresponds to lower investment levels of financially constrained
firms compared to the average investment response, irrespective of the di-
rection (i.e., coefficient) of the average effect. Since the average effect in
hypothesis one is expected to be ambiguous (i.e., both ; < 0 and f; > 0
are plausible), the investment response of financially-constrained firms is
therefore predicted to be more negative (and not greater or smaller than
the average effect as such a statement requires a clear prediction of the di-
rection of the average effect).

16The definition of Tobin’s q is the same as in Jacob et al. (2018) (i.e.,
the market value of equity over total assets). It was necessary to add new
data on Tobin’s q since the variable Market Value (denoted by mkvalt) in the
provided Compustat data suffered from poor coverage. Attempts to estimate
this variable via share price * number of shares as in the originally provided
Compustat dataset only increased the coverage marginally.

17This adjustment was carried out in two steps. First, I manually re-
placed missing values for Argentina, Jamaica, New Zealand, and Nigeria
based on World Bank data. Second, I merged new data from the World
Bank website for all other 66 countries with missing data entries to the
#3.1_full_codes.dta dataset. Missing countries, for instance, included Tai-
wan, Cyprus, Monaco, and Paraguay.
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Table 1: Summary Statistics of Main Variables

This table displays summary statistics of all main variables from 1997 to 2013. Panel A presents descriptive statistics for variables on the country level. Panel
B summarises descriptive statistics for variables on the firm level. Please refer to Table A.1 in the appendix for variable definitions. Notes: Summary Statistics
of all firm-level variables in Panel B correspond to the winsorised version of the respective variable to eliminate the effect of outliers on my results.

Variable N Mean Standard 25th Median 75th
Deviation percentile percentile
Panel A: Country-level Variables
Tax Policy Variables
Personal Tax 345,333 0.3972 0.0938 0.3500 0.4000 0.4641
Corporate Tax 345,954 0.3215 0.0742 0.2700 0.3300 0.3900
Consumption Tax 325,864 0.1073 0.0627 0.0519 0.1000 0.1700
Payout Tax 345,333 0.1621 0.1027 0.1000 0.1500 0.2488
Accelerated Depreciation 345,954  0.8109 0.3916 1 1 1
LCB 345,954 0.4334 0.4955 0 0 1
Group Taxation 343,328 0.5521 0.4973 0 1 1
Progressive 345,954 0.6302 0.4828 0 1 1
Extended Tax Definitions
67% Earner 201,247 0.3685 0.1017 0.3198 0.3439 0.3939
100% Earner 201,247 0.4018 0.0936 0.3423 0.3883 0.4361
133% Earner 201,247 0.4420 0.0918 0.4093 0.4336 0.4770
167% Earner 201,247 0.4275 0.0984 0.3525 0.4340 0.4748
Macroeconomic Variables
GDP Growth 363,902 3.5813 3.4689 1.7292 3.1400 5.1472
Ln(GDP per Capita) 363,817 9.6124 1.3841 8.6600 10.4290 10.5557
Inflation 363,902 2.7073 4.3191 0.8477 2.0327 3.7157
Deficit 269,504 -2.6679 3.9788 -4.8523  -3.1779 0.0177
Openness 304,174  0.7266 0.8649 0.2829 0.4831 0.6549
Interest Payments 279,947 0.0225 0.0123 0.0150 0.0230 0.0276
Government Debt 196,624 60.9360 37.7089 40.0881 53.5029 64.0318
Governance Indicators
Voice and Accountability = 371,022  0.6717 0.8952 0.3900 1.0100 1.3500
Political Stability 371,017 0.3316 0.8166 -0.2000 0.6000 0.9600
Government Effectiveness 371,006 1.1319 0.7665 0.4000 1.4600 1.7500
Regulatory Quality 371,006  0.9722 0.7837 0.4200 1.1900 1.6200
Rule of Law 371,022 0.9888 0.7968 0.2900 1.3300 1.6100
Control of Corruption 371,006  0.9794 0.9781 0.0500 1.2900 1.8350
Panel B: Firm-level Variables
Investment 321,987 0.0719 0.1096 0.0139 0.0357 0.0803
Cash Holdings 338,232 0.1269 0.2727 0.0020 0.0203 0.1129
Profit 337,817 0.0268 0.2106 -0.0036 0.0517 0.1141
Leverage 369,749 0.0933 0.1563 0.0007 0.0112 0.1167
Ln(Sales Growth) 323,754 0.0876 0.4335 -0.0460 0.0730 0.2182
Sales Growth 287,128 0.4841 1.7148 -0.0637 0.1468 0.4652
Loss 370,210 0.2984 0.4576 0 0 1
Tobin’s q 279,446 1.4997 3.5907 0.3319 0.6837 1.4016
Size 388,193 6.5558 3.0442 4.3872 6.3843 8.4709
the WHU chair, I retrieved and added data on geographic re- section.

gions following World Bank definition from the World Bank
website to construct a region-cluster later in my robustness

After merging datasets, I conducted general data clean-
ing to eliminate implausible observations. For instance, I
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dropped firms with SIC codes 4000 to 4999 (i.e., utility, trans-
portation, and telecommunication firms) and 6000 to 6999
(i.e., financial firms) since these subsets of firms likely ex-
hibit different investment behaviour which could distort my
results'®. In addition, I excluded observations for which firms
had negative total assets or for which total assets were un-
available. Likewise, I limited my baseline sample to obser-
vations with positive sales and cash holdings'®. To elimi-
nate bankrupt firms, I also dropped observations with a value
of Common/Ordinary Equity smaller than or equal to zero
and which possess a Leverage ratio greater than or equal
to one. The sample was further limited to observations for
which the macroeconomic variables GDP per capita, Open-
ness, Government Debt, and Interest Payments were not neg-
ative to eliminate further implausible observations. Addi-
tionally, I conducted specific data cleanings tailored to my
research question. For instance, I only included observations
for which capital expenditure was greater than or equal to
zero to restrict my analyses to firms with non-negative invest-
ment. Similarly, I dropped implausible tax rates with values
less than zero or higher than one. I also conducted specific
data cleanings in my cross-sectional variation analyses (e.g.,
by dropping negative (i.e., implausible) net PPE when test-
ing for different factor substitutability across firms), but these
cleanings were carried out after my baseline tests and thus do
not affect the composition of my baseline sample or robust-
ness tests. Following my data cleanings, I converted firm-
level variables which were denoted in currencies other than
U.S. Dollar into U.S. Dollar by using the average annual U.S.
Dollar exchange rate in the corresponding year issued by the
WHU Chair of Business Taxation®’. In addition, I winsorised
all non-dummy, firm-level variables and their lags below the
1st and above the 99th percentile to reduce the effect of ex-
treme outliers on my results?!. Overall, these adjustments
result in a baseline sample comprising 42,670 firms located
in 115 countries from 1997-2013%2, Table 1 presents sum-
mary statistics on all variables used in my baseline specifica-

18 Asker et al. (2011), for instance, argue that financial firms and utility
firms are subject to different regulation affecting their investment policy.
Similarly, companies in the transportation and telecommunication sector
mostly tend to be formerly state-owned and, due to their business model,
I expect them to possess a substantial amount of fixed assets with corre-
spondingly high capital expenditure. It is therefore plausible to assume that
these subsets of firms differ substantially in their investment behaviour com-
pared to all other firms included in the sample (and thus could distort my
results).

9please note that cash holdings are defined as the sum of cash holdings
and short-term investments because short-term investments are assumed to
be as liquid as cash. Please refer to Table A.1 in the appendix for exact
variable definitions.

2950me firm-level variables such as EBIT, sales, or total assets were already
denoted in USD. Therefore, I excluded these variables from the currency
conversion process.

211 refrained from winsorising my tax policy variables and country-level
data from the World Bank since these are official statistics. Similarly, the
appended data on Tobin’s q were already winsorised and hence excluded
from the winsorisation process.

22Since data on tax policy variables are only available from 1999-2013,
the sample is ultimately restricted to 40,608 firms from 1999-2013 in subse-
quent regressions. If social security contributions are included in the defini-

tion after these adjustments.

4. Pre-Analysis: Linear Probability Model and Variation
in Personal Tax Rate Changes

Prior to running regressions on corporate investment be-
haviour, my data on personal tax rates must fulfil two funda-
mental conditions. First, my independent variable of interest
(i.e., the personal tax rate) must exhibit a sufficiently large
degree of variation in my sample. Otherwise, my causal in-
ference would be limited to a few selected events and could
barely be generalised to all countries available in my dataset
(Jacob et al., 2018). Fortunately, my cross-country panel of
115 countries provides a solid source of tax rate variation as
personal taxes change 217 times from 1999 to 2013 (thereof
76 increases and 141 decreases). Even when abstracting
from personal tax changes of less than two percentage points,
121 changes can still be observed (thereof 43 increases and
78 decreases). Consequently, my dataset shows a sufficiently
large variation of the personal tax rate and fulfils the first
condition.

Second, changes in the personal tax rate must be exoge-
nous to allow for clear causal inference. This is especially crit-
ical since my baseline regression assumes changes in the per-
sonal tax rate to be entirely exogenous. Otherwise, I would
only “observe a spurious correlation” (Jacob et al., 2018,
p-15) instead of a causal relationship between personal taxes
and investment. Analogously to Jacob et al. (2018), I there-
fore address endogeneity concerns by running a linear prob-
ability model showing whether changes in the personal tax
rate are related to the business cycle or other economic con-
ditions. In the model, I include the six macroeconomic deter-
minants GDP Growth, Ln(GDP per capita), Inflation, Deficit,
Openness, and Interest Payments on government debt as re-
gressors®®> (Jacob et al., 2018). Likewise, I also use coun-
try fixed effects and region-year fixed effects to capture time
invariant effects at the country level and limit comparable
countries to their counterparts within the same World Bank
region (Jacob et al., 2018).

Table 2 displays results of my linear probability model.
In columns (1) and (2), I model whether macroeconomic
determinants affect the probability of personal tax changes
by more than 2.0 percentage points. As the dependent vari-
able, I use a dummy equal to one if personal taxes are in-
creased (column 1) or decreased (column 2). In addition,

tion of the personal tax wedge, the sample further shrinks to 25,874 firms as
data on social security contributions are only available for OECD countries
from 2000-2013.

23In the excel file 2. LPM Results Edited.xls, three specifications of this
model were used. In specification (1), I additionally included Government
Debt as a regressor but abstracted from it in specifications (2) and (3).
Also, specifications (1) and (3) are restricted to the same 410 observations,
whereas specification (2) considers 743 observations. I therefore reported
specification (2) to avoid distorted results due to a poor coverage of Gov-
ernment Debt. This is supported by similar results (both magnitude and
significance) in specifications (1) and (3) indicating that omitting Govern-
ment Debt is unlikely to cause an omitted variable bias.
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Table 2: Linear Probability Model Results

This table presents results of my linear probability model. In columns (1) and (2), I model macroeconomic determinants which affect the probability of
changes in the personal tax rate by more than 2.0 percentage points. The magnitude of these changes are modelled in columns (3) to (5). Please refer to
Table A.1 in the appendix for definitions of explanatory variables. I further include country fixed effects and region-year fixed effects in all specifications.

This table also reports robust standard errors clustered at the country level in parentheses. *,

*

** and *** denote significance at the 10%, 5%, and 1% level,

respectively.
Probability of Magnitude of
Tax Increase Tax Decrease Tax Change Tax Increase Tax Decrease
€3) (2 () 4) )

GDP Growth -0.0025 -0.0054 0.0000 -0.0014 -0.0116
(0.0031) (0.0058) (0.0006) (0.0031) (0.0070)

Ln(GDP per Capita) -0.0948 0.1222 0.0114 0.1483 0.2556
(0.1236) (0.2334) (0.0218) (0.1906) (0.2674)

Inflation 0.0010 0.0038 0.0000 0.0007 0.0015
(0.0014) (0.0023) (0.0002) (0.0013) (0.0027)

Deficit -0.0015 0.0092 -0.0005 -0.0130* 0.0072
(0.0037) (0.0062) (0.0004) (0.0068) (0.0078)

Openness 0.0879 -0.1711 -0.0024 0.0332 0.0022
(0.1100) (0.1574) (0.0187) (0.1406) (0.1820)

Interest Payments 1.0763 0.9006 0.1096 5.0101% -0.5837
(1.6420) (1.9015) (0.1674) (2.9223) (3.4237)

Observations 743 743 743 743 743
Country FE Yes Yes Yes Yes Yes
Region-Year FE Yes Yes Yes Yes Yes
Adjusted R-squared -0.012 -0.048 -0.106 0.134 0.073

the magnitude of all 217 personal tax changes is modelled in
the remaining columns. In column (3), the dependent vari-
able is denoted by the change in the personal tax rate. In
columns (4) and (5), I interact this change with a dummy
for a tax increase and tax decrease, respectively (e.g., Jacob
et al., 2018).

Overall, based on my dataset, changes in the personal
tax rate appear to be mostly exogenous since four macroe-
conomic variables are not significant. In addition, the prob-
ability and the magnitude of personal tax changes seem to
be mostly unaffected by economic conditions except for the
magnitude of personal tax increases. This is indicated by sig-
nificant coefficients for Deficit and Interest Payments in col-
umn (4). That is, if the budget deficit increases (e.g., in re-
cessions), policy makers tend to increase personal taxes less
strongly, thereby limiting the adverse effect of personal taxes
on economic growth. Furthermore, policy makers tend to
increase personal taxes more strongly to finance higher in-
terest payments which, for example, could be a result of for-
merly high budget deficits. Considering these results, I define
quartiles of Deficit and Interest Payments for each year and
create a deficit-interest-payment-cluster-industry-year fixed
effect for my baseline regression. This assures that firms in
countries with personal tax changes are compared to a con-
trol group which is subject to similar economic conditions in
terms of budget deficit and interest payments.

5. Main Empirical Analysis and Results

In this section, I estimate the causal effect of a change in
the personal tax rate on investment at the firm level. To ac-
complish this, I structured this section into two main parts.
First, the average effect on investment is analysed in my base-
line model using the cross-country panel of 115 countries
from 1999 to 2013 (2000 to 2013 for social security contri-
butions). Second, I examine cross-sectional variation in in-
vestment responses due to cross-sectional differences in firm
characteristics such as (a) market power vis-a-vis stakehold-
ers, (b) different degrees of input factor substitutability, and
(c) the presence of financial constraints.

5.1. Baseline Regression

To estimate the average effect of personal taxes on cor-
porate investment behaviour, I construct the following linear
regression model based on the estimation method of ordinary
least squares:

Inv; ; . =ag + p1Personal Tax; , + 51Fj’t + 52Tj’t+
63P; 1+t teE, (€9)

My dependent variable is Investment of firm i located in
country j in year t. Consistent with previous literature (e.g.,
Jacob et al., 2018), I approximate my dependent variable
with capital expenditure over lagged total assets. My inde-
pendent variable of interest is the personal tax rate which is
denoted by Personal Tax; .. I employ five different definitions
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of the personal tax rate. First, the top marginal income tax
rate on labour income is used to analyse the effect of the pure
personal tax rate on investment. Second, I extend this defi-
nition and include social security contributions. Doing so, I
consider four different income classes of employees in OECD
countries, which are expressed as a percentage of the average
wage earned in a respective country-year>*.

To account for variables which could affect investment
other than personal taxes, I include three control vectors in
my baseline regression. First, I account for country-level fac-
tors in vector I, which comprises the macroeconomic vari-
ables GDP Growth, Ln(GDP per Capita), Inflation, Deficit,
and Interest Payments as well as the governance indicators
Voice and Accountability, Political Stability, Government Ef-
fectiveness, Regulatory Quality, Rule of Law, and Control of
Corruption as defined by the World Bank (e.g., Jacob et al.,
2018). Variables with poor coverage such as Openness or
Government Debt, however, were excluded to increase the
number of observations in my regression®>. Second, my con-
trol vector T;, contains a set of tax policy variables includ-
ing Accelerated Depreciation, LCB, Group Taxation, and Pro-
gressive’® analogous to Jacob et al. (2018). To address con-
cerns that changes in the personal tax rate coincide with
changes in other tax rates, I additionally include other tax
rates such as Consumption Taxj,t, Payout Taxj,t, and Corpo-
rate Taxj,t in the tax policy variable vector T;, (e.g., Jacob
et al., 2018). Doing so enables me to isolate the effect of
personal tax changes on firm-level investment. Third and fi-
nally, I include control variables on the firm level via vector
®; ;1. In this vector, I account for Cash Holdings, Profit,
Leverage, Ln(Sales Growth), Tobin’s q, Size, and Loss anal-
ogous to previous investment literature®’ (e.g., Baker et al.,
2003; Cummins et al., 1996; Dobbins and Jacob, 2016; Jacob
et al., 2018). All firm-level controls are lagged by one period
to eliminate concerns about endogeneity (Dobbins and Ja-
cob, 2016).

Furthermore, my baseline model includes two fixed

24These alternative definitions follow the definition of the OECD tax
database and are conceptually no taxes. However, I nevertheless expect so-
cial security contributions to have the same economic effect on investment
as the pure personal tax rate.

25Please refer to Table 1 in section 3 for an overview of the coverage of
main variables. My baseline results are robust to including Openness as an
additional control variable when using the deficit-interest-payment-cluster-
industry-year fixed effect of my baseline specification. Please refer to the
excel file 3. Baseline Results Edited.xls for detailed results.

26preRler and Overesch (2013), for instance, discuss that LCB and Group
Taxation influence investment behaviour of firms. Besides, I expect Accel-
erated Depreciation and Progressive to affect investment decisions and risk-
taking of firms, respectively. A dummy for loss carry forwards has not been
included in my model as all countries allow for loss carry forwards in the
sample period.

27This set of firm-level controls is included for several reasons. Cash Hold-
ings and Profit are used since cash-rich or more profitable firms invest more
due to a higher availability of internal resources (e.g., Dobbins and Jacob,
2016; Faulkender and Petersen, 2012; Fazzari et al., 1988; Lamont, 1997).
Likewise, smaller firms are expected to have better opportunities for invest-
ment (e.g., Carpenter and Petersen, 2002; Dobbins and Jacob, 2016). To
measure growth opportunities, I also include Ln(Sales Growth) and Tobin’s
q. (e.g., Dobbins and Jacob, 2016; Jacob et al., 2018). Besides, a dummy for

effects. Firm fixed effects a;, for instance, capture time-
invariant factors at the firm level which potentially affect
investment behaviour (e.g., Dobbins and Jacob, 2016; Ja-
cob et al., 2018). Likewise, I include [group]-industry-year
fixed effects a,;,, where [group] is a substitute for the
deficit-interest-payment-cluster and individual industries are
denoted by the subscript k**. Hence, firms experiencing a
personal tax change in country j are compared to a control
group which is operating in the same industry k and subject
to similar economic conditions in terms of budget deficit
and interest payments in year t. Since firms in country j
are subject to the same tax system, my baseline regression
employs heteroskedasticity-robust standard errors clustered
at the country level.

Recalling hypothesis one in section 2, I expect the aggre-
gate effect of personal taxes on capital investment to be am-
biguous. That is, although an increase in personal taxes un-
ambiguously increases the factor price of labour, thus mak-
ing labour relatively more unattractive, capital investment
of firms can respond in two ways. First, firms could treat
labour and capital as complements. Thus, firms would re-
duce capital investment analogously to the more expensive
factor labour to maintain their optimal input factor mix as de-
termined by their production function (Dobbins and Jacob,
2016). Second, previous studies demonstrated that labour
and capital can be substitutes on the margin (e.g., Dyreng
et al.,, 2017). That is, firms partially substitute the more ex-
pensive factor labour by capital, and hence increase their cap-
ital investment even though taxes increase®’. I thus make no
prediction on the sign of my coefficient 5, as 8; < 0 and f3;
> 0 are both plausible.

Table 3 presents my baseline results. In column (1), [ use
the top marginal income tax rate on labour income as my in-
dependent variable of interest. Columns (2) to (5) employ
extended definitions of the personal tax rate which include
social security contributions. Surprisingly, capital investment
responses depend on the definition of personal taxes. That
is, although coefficients of personal taxes are mostly positive
across all five specifications, only the coefficient of the pure
personal tax rate (hereafter: pure tax rate) is significant®°.
Vice versa, all specifications including social security contri-
butions on average have no effect on firm-level investment
due to insignificant coefficients. These results have two im-
plications. First, for the pure tax rate, my results confirm
empirical findings of prior studies (e.g., Dyreng et al., 2017)

losses is added to respect that firms with negative pre-tax income are likely
to invest less (Dobbins and Jacob, 2016).

28My baseline results are not robust to replacing [group]-industry-
year fixed effects by region-industry-year fixed effects and income-group-
industry-year effects. Please refer to Table 7 in section 6 for results.

29Consistent with my hypothesis development, I abstract from productiv-
ity differences between the two input factors as corresponding estimates are
difficult to obtain (e.g., Dyreng et al., 2017).

30Consistent with previous literature on corporate taxes (e.g., Dobbins and
Jacob, 2016), dividend taxes (e.g., Alstadseeter et al., 2017) and consump-
tion taxes (e.g., Jacob et al., 2018), coefficients on other tax rates are almost
always significant and their sign is negative.
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Table 3: Baseline Results

This table presents my regression results on investment behaviour from 1999 to 2013. The dependent variable is Investment. I use five different specifications
of the personal tax rate. In column (1), the top marginal income tax rate on labour income is used. In Columns (2) to (5), this definition is extended and
includes social security contributions for different income classes of employees in OECD countries for the 2000-2013 period. Please refer to Table A.1 in
the appendix for definitions of independent variables. 1 further include firm fixed effects and [group]-industry-year fixed effects in all specifications, where
[group] is a substitute for the Deficit-Interest-Payment-cluster. This table also reports robust standard errors clustered at the country level in parentheses. *,
** and *** denote significance at the 10%, 5%, and 1% level, respectively.

(1) (2) (3) @] (5)
Personal Tax 0.0367*
(0.0213)
67% Earner 0.0003
(0.0367)
100% Earner 0.0129
(0.0243)
133% Earner -0.0268
(0.0308)
167% Earner 0.0258
(0.0327)
Corporate Tax -0.0471 -0.0958***  -0.0981***  -0.0970*** -0.0973***
(0.0355) (0.0325) (0.0326) (0.0319) (0.0309)
Consumption Tax -0.4256***  -0.5755***  -.0.5758***  -0.5673*** -0.5823***
(0.0604) (0.0835) (0.0826) (0.0819) (0.0851)
Payout Tax -0.0094 -0.0165* -0.0172* -0.0172* -0.0182*
(0.0140) (0.0095) (0.0095) (0.0092) (0.0094)
Cash Holdings 0.0200%** 0.0176** 0.0176** 0.0176** 0.0176**
(0.0068) (0.0068) (0.0068) (0.0068) (0.0068)
Profit 0.0196* 0.0106 0.0106 0.0106 0.0106
(0.0105) (0.0103) (0.0103) (0.0103) (0.0103)
Leverage -0.0438***  -0.0415*** -0.0415*** -0.0415*** -0.0415***
(0.0077) (0.0074) (0.0074) (0.0073) (0.0074)
Ln(Sales Growth) 0.0032%** 0.0033* 0.0033* 0.0033* 0.0033*
(0.0015) (0.0018) (0.0018) (0.0018) (0.0018)
Tobin’s q 0.0020* 0.0032** 0.0032** 0.0032** 0.0032%**
(0.0011) (0.0012) (0.0013) (0.0013) (0.0013)
Size -0.0186***  -0.0172*** -0.0172*** -0.0172*** -0.0172%**
(0.0025) (0.0024) (0.0024) (0.0024) (0.0024)
Loss -0.0089***  -0.0082***  -0.0082*** -0.0082*** -0.0081%***
(0.0014) (0.0012) (0.0012) (0.0012) (0.