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liquidity premium. In this case, the option is executed for LP = GP . As the liquidity

premium cannot change over time, the option is executed as soon as liquidity effects

and the green premium cancel each other out. The resulting maximum value of the

switch option before execution, STmax, is equal to zero in this scenario. For LP < GP ,

there is no chance that the option is executed as it implies a certain negative yield

differential ∆y. Therefore, the value of the option is equal to zero in this case as well.

Table 6: Option value at execution for different σ

σ LP STmax

0 8 0
0.002 10.53 2.53
0.004 13.28 5.28
0.008 18.81 10.81
0.010 21.26 13.26

The table shows the values of STmax for different σ based on GP = 8bp, a risk-free rate of rf = 200bp,
a = 11.9, T = 3.1 years and a trinomial tree length of N = 791.

Finally, Table 7 shows STmax for different times to maturity T . In the model, this

increases the length of the trinomial tree because ∆t = T
N

= 1
250

is held constant. The

results indicate a lower maximum value of the switch option STmax for longer maturities

T . This is explained by the decreasing likelihood of the stochastic liquidity premium

realizing an outcome lower than LP . Therefore, the switch option is executed for a

lower expected liquidity premium LP reducing its maximum value STmax.

Table 7: Option value at execution for different T

T LP STmax

1 12.35 4.35
5 12.06 4.06
10 11.51 3.51
20 10.76 2.76
30 10.31 2.31

The table shows the values of STmax for different T (constant ∆t) based on GP = 8bp, a risk-free rate
of rf = 200bp, σ = 0.0031 and a = 11.9. Changes in T affect the tree length N , as ∆t is hold constant
with ∆t = T

N = 1
250 .
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5.3 Sensitivity Analysis of Bond Yields

The sensitivities of the initial yield to maturity to changes in the model parameters are

estimated using finite differences that is motivated by a Taylor approximation. This

approximation is required because a closed-form solution is not available due to the

non-closed form of the model. Following ?, a symmetric approximation of the first

partial derivative of the yield y0 with regard to the model parameters is computed, as

this approach yields a lower order truncation error compared to forward or backward

approximation. In its general form, the first derivative can be estimated using,

∂y0(x)

∂x
≈ y0(x+ h)− y0(x− h)

2h
, (25)

where h denotes a small and constant value and x the parameter of interest, while the

other model parameters are hold constant. The resulting sensitivities are displayed in

Figure 10. The figures indicate that the sensitivity of the German green bond G has a

continuous part, and a discontinuous part with jumps when LP assumes values above

a certain threshold. The number of observed jumps in the figures for G coincide with

jmax = 4 (or −jmin) of the calibrated model. One viable explanation might be that

nodes in the tree switch to the value of the conventional bond, if the liquidity premium

assumes a high enough value so that PG < PC (see Equation 15). This also explains

the continuous part on the left-hand side of the figures, as a switch scenario does not

occur for low values of LP .

Figure 10a describes how much units the yield changes, if LP changes by one unit.

The yield of the illiquid green bond yIG changes by one basis point, if LP increases by

one basis point, while yC is unaffected by changes in LP . The sensitivity of yG ranges

between 1 and 0. This aligns with the notion that the German green bond is valued

as a conventional bond if LP is sufficiently high and valued as a counterfactual bond

without switch option, if LP is sufficiently low, assuming a constant GP . In those cases,

the stochastic process for LP either cannot assume values where yG is lower than yC ,

or where the switch option is executed. Figure 10b implies that a higher instantaneous

volatility σ decreases yG. This is because the downside potential is restricted by the

switch option, while a lower realized liquidity premium reduces yG. The parameter a

describes the mean reversion rate of the stochastic process. Therefore, this sensitivity is

inversely related with the sensitivity of yG to σ. Finally, an increase in T , increases the

yield yG as well. Based on the absolute size of the sensitivities, the evaluation suggests

that changes in σ and LP have the strongest impact on the model results. In light of

the evaluation, it should be noted that the sensitivities only reflect the impact of small
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changes in the parameters. Further, their changes and thus the effect on the model

results is restricted by their plausible range. Nevertheless, the model outcome might

be significantly larger or smaller, if different estimates for those parameters are chosen.

Figure 10: Model sensitivities
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(a) Sensitivity to changes in LP
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(b) Sensitivity to changes in σ
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(c) Sensitivity to changes in a
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(d) Sensitivity to changes in T

The model results displayed in the figures above are based on a green premium of GP = 8bp, a risk-free
rate of rf = 200bp, σ = 0.0031, a = 11.9, T = 3.1 years, a trinomial tree length of N = 791 and
h = 0.00001

5.4 Limitations

The above discussed model for the green bond yields provides a first insight into the

potential effects of the switch option between green and conventional bonds, which was

pioneered by the German twin bond approach. However, the model is subject to some

limitations that are discussed in the following.
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First, the model cannot decompose observed green bond yields ŷG into the differ-

ent components suggested by the model. Namely, the observed yield of the respective

conventional twin ŷC , the liquidity premium LP , the green premium GP and the added-

value of the switch option ST . This means that a calibration of the model parameters

is not straightforward and proxies need to be applied instead. Moreover, this impedes

the validation of the model results based on actual observations.

Another possible limitation can be the assumed process for the liquidity premium

and its translation into a trinomial tree representation. For example, the Vasicek pro-

cess in Equation 2 assumes a constant volatility and is, in addition to a mean-reversion

parameter, defined by its first two moments. This means that it cannot accommodate

possible volatility clusters or skewness that is introduced by jumps in the liquidity pre-

mium, as shown in Figure 6. Moreover, deriving the trinomial tree representation, we

assume a maximum range from LPjmin to LPjmax for the liquidity premium to ensure

positive tree probabilities. This creates an upper and lower threshold that the liquidity

premium cannot exceed. However, increasing the volatility of the process may provide

a first idea of the possible implications when accounting for these effects, as it increases

the overall dispersion of the stochastic premium.

Finally, the model assumes a constant risk-free rate r and green premium GP .

While adding additional complexity to the model by introducing more flexible (e.g.,

stochastic or time-dependent) components might improve the calibration to observed

yield spreads, this is not relevant for the main objective of this dissertation to better

understand the potential impact of the switch option.

6 Conclusion

The goal of this dissertation is to provide a theoretical model for the pricing of green

bonds that are based on the German twin bond approach. The focus here is on improv-

ing the understanding of the potential effects of introducing a switch mechanism be-

tween green bonds and their conventional counterparts. For this purpose, a non-closed

form solution was derived that decomposes the yield differential into three effects: A liq-

uidity premium, a green premium and the added value of the switch option. The model

assumes a stochastic liquidity premium that follows a Vasicek process in discrete time,

a constant green premium as well as a constant risk-free rate. The switch mechanism is

modelled by assuming the theoretical value of conventional bonds as a lower limit for the
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green bond prices. For the model calibration the term structures of German Bundesan-

leihen and Pfandbriefen are used to obtain a proxy for the stochastic liquidity premium.

The main learning from the model is that the switch option can in certain condi-

tions increase the value of the green bonds, which corresponds to a lower yield. Based

on the calibration of the model, a maximum added-value of 4.1 bp before the execu-

tion of the option was identified. This translates to a maximum value of about 2 mn.

EUR assuming a green bond with a 5 bn. EUR issuance volume. This means that

issuers adopting the twin bond concept may be able to secure lower costs of capital

compared to a traditional green bond concept that does not provide the switch option.

For investors the concept reduces their exposure to potential liquidity risks by using

the liquid conventional bonds to create a lower limit for the green bond price. The

model improves the understanding of the twin bond concept and thereby fills a gap in

the literature. From a practical perspective, the model implications may assist issuers

in the design choice of their green bond framework. For example, Denmark decided

to adopt the twin bond concept, including a switch mechanism, which supports the

potential benefits of this approach.

Green bonds are one important instrument to finance the transition to a more sus-

tainable economy. In light of the significant growth of the green bond market in recent

history and the competing frameworks, it is crucial to elaborate on their respective ad-

vantages and disadvantages. While this work contributes to the understanding of the

twin bond switch mechanism, the current model can be further developed. On the one

hand, an improved proxy for the liquidity premium and a larger sample of historic data

may affect the calibration results, which can impact the size of the evaluated effects. On

the other hand, a more sophisticated stochastic process for the liquidity premium and

less restrictive assumptions in its discrete representation may increase the precision of

the model results. In a broader context, one should evaluate if a high issuance volume

of green bonds can affect the liquidity of similar conventional bonds, and whether a

potential effect vanishes for lower volumes. If such effects are found, this would sup-

port the relevance of the twin bond approach with switch option to mitigate liquidity

risks, as lower overall issuance volumes may be required. Otherwise, ensuring a critical

volume that is high enough to avoid liquidity costs may be a viable alternative to this

concept.
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A Appendix

A.1 Derivation of Trinomial Tree Model

We derive the probabilities for the trinomial tree following the assumptions in ?. For

the default branching method (i.e., jmin < j < jmax), the condition for the expected

change notates as,

pu ·∆s+ pm · 0 + pd · (−∆s) = E[dLPt]

= −a · j ·∆s ·∆t
(26)

Dividing by ∆s and solving for pd yields

pd = pu + a · j ·∆t. (27)

We use this result in the condition for the variance

pu ·∆s2 + pm · 02 + pd ·∆s2 = σ2 ·∆t+ a2 · j2 ·∆s2 ·∆t2

pu ·∆s2 + (pu + a · j ·∆t) ·∆s2 = σ2 ·∆t+ a2 · j2 ·∆s2 ·∆t2
(28)

and solve for pu to obtain

pu =
1

2
σ2 · ∆t

∆s2
+

1

2
a2 · j2 ·∆t2 − 1

2
a · j ·∆t. (29)

We use ∆s = σ
√

3∆t or ∆s2 = σ2 · 3∆t to obtain

pu =
1

2
σ2 · ∆t

σ2 · 3∆t
+

1

2

(
a2 · j2 ·∆t2 − a · j ·∆t

)
=

1

6
+

1

2

(
a2 · j2 ·∆t2 − a · j ·∆t

)
.

(30)

We use this result to obtain the probability pd as

pd = pu + a · j ·∆t

=
1

6
+

1

2

(
a2 · j2 ·∆t2 + a · j ·∆t

)
.

(31)

Finally, we use pu + pm + pd = 1 to obtain

pm = 1− pu − pd

=
2

3
− a2 · j2 ·∆t2.

(32)
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At the limits of the trinomial tree (i.e., jmin and jmax), the branching structure

changes as displayed in Figure 5.

First, we compute the probabilities for the lower limit jmin. For this, we change the

condition for the expected change to,

pu · 2∆s+ pm ·∆s+ pd · 0 = E[dLPt]

= −a · j ·∆s ·∆t,
(33)

as the liquidity premium cannot decrease any further. We obtain

pm = −2pu − a · j ·∆t, (34)

which we substitute into the new condition for the variance

pu · 4∆s2 + pm ·∆s2 + pd · 02 = σ2 ·∆t+ a2 · j2 ·∆s2 ·∆t2

pu · 4∆s2 + (−2pu − a · j ·∆t) ·∆s2 + pd · 02 = σ2 ·∆t+ a2 · j2 ·∆s2 ·∆t2.
(35)

We solve the equation for pu and use ∆s2 = σ2 · 3∆t to obtain

pu =
1

2
σ2 · ∆t

σ2 · 3∆t
+

1

2

(
a2 · j2 ·∆t2 + a · j ·∆t

)
=

1

6
+

1

2

(
a2 · j2 ·∆t2 + a · j ·∆t

)
.

(36)

We use this result to obtain the probability pm as

pm = −2pu − a · j ·∆t

= −1

3
− a2 · j2 ·∆t2 − a · j ·∆t− a · j ·∆t

= −1

3
− a2 · j2 ·∆t2 − 2a · j ·∆t.

(37)

Finally, we use pu + pm + pd = 1 to obtain

pd = 1− pu − pm

=
7

6
+

1

2

(
a2 · j2 ·∆t2 + 3a · j ·∆t

)
.

(38)

In the same fashion, we can compute the probabilities for jmax. In this case, we
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change the condition for the expected change to,

pu · 0 + pm · (−∆s) + pd · (−2∆s) = E[dLPt] (39)

and the condition for the variance to

pu · 0 + pm ·∆s2 + pd · 4∆s2 = σ2 ·∆t+ a2 · j2 ·∆s2 ·∆t2. (40)

In this case, we obtain

pu =
7

6
+

1

2

(
a2 · j2 ·∆t2 − 3a · j ·∆t

)
pm = −1

3
− a2 · j2 ·∆t2 + 2a · j ·∆t

pd =
1

6
+

1

2

(
a2 · j2 ·∆t2 − a · j ·∆t

) (41)

Based on the calibration result of the model in section 4.3, we use these formulas

to compute the probabilities for the trinomial tree. The probabilities are displayed in

Table 8.

Table 8: Trinomial tree probabilities

j pu pm pd

jmax 4 0.9008 0.0093 0.0900
3 0.1058 0.6465 0.2477
2 0.1238 0.6577 0.2184
1 0.1441 0.6644 0.1914
0 0.1667 0.6667 0.1667
-1 0.1914 0.6644 0.1441
-2 0.2184 0.6577 0.1238
-3 0.2477 0.6465 0.1058

jmin -4 0.0900 0.0093 0.9008

The table shows the probabilities for the
trinominal tree using σ = 0.0031, a = 11.9,
T = 3.1 years, N = 791 and assuming ∆s =
σ
√

3∆t.
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A.2 Additional Robustness Tests for Switch Option Value

Table 9: Option value at execution for different interest rate r

r LP STmax

-100 12.06 4.06
0 12.06 4.06

100 12.06 4.06
200 12.06 4.06

The table shows the values of STmax for different r based on GP = 8bp, σ = 0.0031, a = 11.9, T = 3.1
years and a trinomial tree length of N = 791.

Table 10: Option value at execution for different rounding precision

Precision LP STmax

4 8 0.35
5 10.31 2.36
6 12.06 4.06
7 12.35 4.35
8 12.35 4.35

The table shows the values of STmax for different rounding precisions, measured in digits after the
decimal point. A precision of six digits equals 0.01bp. The further parameters are GP = 8bp, a risk-
free rate of rf = 200bp, σ = 0.0031, a = 11.9, T = 3.1 years and a trinomial tree length of N = 791.
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A.3 Additional Estimation Results and Statistics

Table 11: Summary statistics for BAS of German twin bonds

Mean SD Min p25 Median p75 Max N

BASG2050 0.67 0.31 0.00 0.50 0.60 0.90 1.50 131
BASC2050 0.57 0.27 0.10 0.40 0.50 0.90 1.00 131
BASG2031 0.57 0.33 0.20 0.30 0.50 0.90 1.30 47
BASC2031 0.29 0.11 0.20 0.20 0.30 0.30 0.80 47
BASG2030 0.70 0.36 0.20 0.40 0.60 0.90 1.70 305
BASC2030 0.29 0.24 0.10 0.20 0.20 0.30 1.70 305
BASG2025 1.27 0.85 0.20 0.60 1.15 1.40 3.30 262
BASB2025 0.57 0.26 0.30 0.40 0.50 0.70 2.40 262

The table shows the summary statistics (i.e., mean, standard deveation (SD),
minimum, 25th percentile (p25), median, 75th percentile (p75), maximum and
number of observations (N)) for the bid-ask spread of the closing yields in basis
points of the German twin bonds displayed in Table 1. The data is retrieved from
Refinitiv Eikon (Accessed: 10.11.2021) and covers the period from 09.09.2020 to
10.11.2021.

Table 12: Summary statistics for yield of German twin bonds

Mean SD Min p25 Median p75 Max N

yG2050 15.96 13.95 -9.80 4.70 17.00 26.70 41.40 127
yC2050 6.12 17.73 -48.60 -8.00 4.30 20.60 44.80 566
yG2031 -25.34 8.40 -40.70 -35.10 -23.70 -17.90 -13.50 43
yC2031 -29.71 12.59 -49.80 -41.90 -30.10 -18.80 -9.70 103
yG2030 -47.15 12.86 -66.90 -59.10 -48.50 -35.40 -21.20 301
yC2030 -43.02 12.69 -64.10 -54.30 -45.50 -31.80 -15.70 358
yG2025 -72.22 6.80 -86.70 -76.80 -72.20 -67.40 -54.50 258
yC2025 -69.38 7.02 -83.70 -74.55 -69.50 -64.65 -46.60 344

The table shows the summary statistics for the yields in basis points of the German
twin bonds displayed in Table 1. The data is retrieved from Refinitiv Eikon (Accessed:
04.11.2021).

41



Table 13: Summary statistics for ∆y between German twin bonds

Mean SD Min p25 Median p75 Max N

∆y2050 -3.95 0.45 -5.70 -4.30 -4.00 -3.60 -3.10 126
∆y2031 -4.41 0.42 -5.50 -4.70 -4.40 -4.20 -3.20 43
∆y2030 -4.76 1.64 -7.60 -6.30 -5.10 -3.30 -1.40 301
∆y2025 -3.36 1.88 -8.50 -4.40 -3.10 -2.30 0.10 258

The table shows the summary statistics for the yield spread (i.e., ∆y = yG−yC)
in basis points between the German twin bonds displayed in Table 1. The data
is retrieved from Refinitiv Eikon (Accessed: 04.11.2021).

Table 14: Summary statistics for liquidity proxy

Mean SD Min p25 Median p75 Max N

LP2050 93.08 9.61 50.54 89.01 93.66 98.55 116.80 549
LP2031 48.76 6.47 36.26 43.77 47.51 52.58 80.15 549
LP2030 48.61 6.31 36.21 43.95 47.55 51.92 78.25 549
LP2025 48.66 6.44 38.01 44.23 47.49 50.66 72.24 549

The table shows the summary statistics for the estimated proxy of the liquidity
premium in basis points. The data is based on published yield curves by the ? and
covers the period from 02.09.2019 until 01.11.2021.

Table 15: Summary of OLS estimation results for Vasicek process

2050 2031 2030 2025

LPt−1 0.7662*** 0.9023*** 0.9078*** 0.9534***
(0.0537) (0.0231) (0.0223) (0.0159)

Constant 0.0022*** 0.0005 ∗ ∗∗ 0.0004*** 0.0002***
(0.0005) (0.0001) (0.0001) (0.0001)

R-squared 0.5863 0.8150 0.8250 0.9089
N 548 548 548 548

Robust standard errors in parentheses. *** p < 0.01, ** p < 0.05, * p < 0.1

The table shows the estimation results for the process of the liquidity premium
specified in Equation 22. The dependent variable is the daily measured liquidity
procxy LPt and the independent variables are a constant and the lagged value
LPt−1. The data is based on published yield curves by the ? and covers the
period from 02.09.2019 until 01.11.2021.
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