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Waiting Time Estimation for Ride-Hailing Fleets Using Graph Neural Networks

Hashmatullah Sadid

Technical University of Munich

Abstract

Ride-hailing services are part of intermodal transport systems, allowing passengers to use various transport modes for their
trip. The optimal choice for a request in the intermodal system depends on the passenger’s waiting time for the ride-hailing
service. Estimating this waiting time is crucial for efficient system operation. The prediction of waiting time depends on
the spatial dependency of the transport network and traffic flow elements. Graph neural network (GNN) approaches have
gained attention for capturing spatial dependencies in various applications, though less attention has been given to ride-hailing
waiting time prediction. The aim of this master thesis is to implement a GNN-based method to predict waiting time for ride-
hailing requests in the network. Simulation-based waiting time data is used for model training and validation. MATSim is
chosen for generating waiting time data under different demand and supply scenarios. Graph Convolutional Network (GCN)
and Gated Attention Network (GAT) are used as prediction models. Regression and MLP methods are used as baselines
to compare model performance. Results show GCN outperforms regression by 15%, while GAT performs 14% better than
regression.

Keywords: graph convolutional network; ride-hailing service; waiting time estimation

1. Introduction

1.1. Background and motivation
The wide implementation of smartphone-based on-

demand mobility services has already started changing the
transport pattern of many cities. Ride-hailing platforms such
as Uber, Lyft, Cabify, or Didi provide location-based and door-
to-door taxi-like services by connecting riders and drivers in
a centralized automated manner. These services provide
the opportunity for passengers to order a customized ride
using a smartphone application (Anderson, 2014; Henao &
Marshall, 2019; Xu et al., 2020; C. Yan et al., 2020; Zha
et al., 2016). Ride-hailing technologies create more busi-
ness opportunities even for individuals with a car capable
to offer taxi-like services (de Souza Silva et al., 2018; Lee
et al., 2018). On the other hand, the complex dispatching
algorithms used in these systems enable efficient matching
of the customers and drivers considering both their spatial
and temporal distributions. This leads to a significant reduc-
tion in search frictions in on-demand mobility services, as
well as boosting the ordering and payment processes. As a
result, lower costs are incurred both for riders and drivers
(Anderson, 2014; Lee et al., 2018; Zha et al., 2016).

The successful implementation of a ride-hailing service
depends on both customers’ expectations and satisfaction as
well as the suppliers’ advantage. From a customer perspec-
tive, the price of the service, waiting time for the vehicle,
reliability of the system, trip comfort, travel time among oth-
ers are the key important perceived values (Gilibert & Ribas,
2019). Whereas for the suppliers, the accurate estimation
of the demand and the recognition of potential service areas
where competitors do not provide high-quality services (e.g.
long passengers’ waiting time) are the crucial decision ele-
ments in their business models. Among other influential fac-
tors, waiting time plays a vital role in generating ride-hailing
demand and thus makes it an important factor for suppliers
to find their optimal service areas.

Meanwhile, ride-hailing services are part of intermodal-
transport systems, allowing passengers to use various trans-
port modes for their entire trip. The optimal choice for a re-
quest in the intermodal-transport system, therefore, depends
on the waiting time of a passenger until served by the ride-
hailing service. Hence, estimating this waiting time is a cru-
cial element for the efficient operation of the system. The
waiting time of a passenger is the exact time that a passen-

DOI: https://doi.org/10.5282/jums/v10i2pp462-490
© The Author(s) 2025. Published by Junior Management Science.

This is an Open Access article distributed under the terms of the CC-BY-4.0
(Attribution 4.0 International). Open Access funding provided by ZBW.

www.jums.academy
https://doi.org/10.5282/jums/v10i2pp462-490


H. Sadid / Junior Management Science 10(2) (2025) 462-490 463

ger needs to wait in the mobility service platform until picked
up.

Prediction and estimation of the waiting time of a cus-
tomer for a ride-hailing service depend both on the spatial de-
pendency of the transport network and traffic flow elements
of the network. The spatial information includes the road
network, demand and supply of the system, request loca-
tion, and more, where the traffic flow elements demonstrate
the variation of traffic flow variables and their relation to the
waiting time in different time intervals. Thus, to predict and
estimate the waiting time considering these influential fac-
tors, it is important to find an correlation among them. This is
typically done by traditional statistical approaches or model-
based methods. Statistical methods require more powerful
feature engineering and assumptions (often leads to inaccu-
rate estimations), where model-based (simulation tools) ap-
proaches require detailed modelling efforts and need high
computational resources. Hence, machine learning-based
approaches especially deep learning techniques have been
widely used to improve prediction accuracy and have been
utilized in many fields including traffic forecasting (C. Chen
et al., 2019; K. Chen et al., 2021; Fang et al., 2020; Jin, Yan,
et al., 2021; Q. Wang et al., 2021; Zhang et al., 2021).

Deep learning methods learn multiple layers of features
by extracting more complex non-linear relationships. A
convolutional neural network (CNN) for instance has been
proved to reflect the spatial features of the network by mod-
elling the whole city as a grid (Jiang & Zhang, 2019). How-
ever, due to non-Euclidean structure of the road network,
this method is not optimal (Bronstein et al., 2017; Jiang &
Luo, 2021; Z. Wu et al., 2021). Therefore, Graph neural net-
works (GNNs) have attracted attention for traffic forecasting
problems, as they could capture spatial dependencies of a
road network as a graph (i.e., intersections as nodes of the
graph and road connections as edges of the graph) (C. Chen
et al., 2019; Fang et al., 2020; Jiang & Luo, 2021; Q. Wang
et al., 2021). For instance, Jin et al., 2022 and Jin, Yan,
et al., 2021 used spatio-temporal GNN to estimate the travel
time using real-world datasets, where X. Wang et al., 2020
employed spatio-temporal GNN for traffic flow prediction.
Despite many studies in traffic forecasting problems (Fang
et al., 2020; Q. Wang et al., 2021; Zhang et al., 2021), less
attentions have been made to estimate the ride-hailing wait-
ing time in a service area using deep learning approaches.
Thus, it is imperative to design a deep learning method to
predict ride-hailing waiting time in a service area considering
spatial and operational features of network and traffic flow
elements.

Meanwhile, deep learning algorithms require a large
amount of data for training, testing, and validation. How-
ever, ride-hailing-related data, especially the waiting time in-
formation are not publicly available or cost-deficient for aca-
demic purposes. Thus it is advantageous to use simulation-
based approaches to extract waiting time data in a service
area.

1.2. Research Objective
The main goal of this master thesis is to implement a

GNN-based method to predict the waiting time of a ride-
hailing request in the transport network. This study employs
a traffic simulation tool (i.e., PTV Vissim, SUMO, MATSim,
etc.) to model traffic network features and ride-hailing ser-
vice scenarios aiming to extract waiting time data for GNN
implementation.

The following sub-aims are also included as a licentiate
part of this work:

1. A literature review on the basics of neural networks,
the theory of GNNs, different types of GNNs, and their
applications, and

2. Developing a simulation-based platform for extracting
ride-hailing waiting time data.

1.3. Structure of the thesis
This thesis is divided into six chapters. Chapter 1 in-

troduces the background, motivation, and objectives of the
study. Chapter 2 gives an overview of topics related to this
thesis. First, an overview of ride-hailing simulation methods
is presented. Subsequently, the basic theory of neural net-
works, and GNNs together with different types of GNNs are
outlined.

In chapter 3, the methodology of this master thesis which
contains the waiting time extraction approach and the pro-
posed GNN framework which is the main contribution of this
master thesis are introduced.

In chapter 4, an experimental setup is designed to gener-
ate waiting time data for the Cottbus city network, and im-
plement it in the proposed models. Chapter 5 presents the
main findings of the experiment together with a sensitivity
analysis.

Chapter 6 gives a summary of the main contributions of
this thesis, followed by a conclusion of the study and provid-
ing outlook for future researches.

2. Literature Review

In this chapter, we review related topics to this master
thesis. First, an overview of on-demand mobility simulation
including taxi modelling in MATSim is presented. Second,
we introduce the basics of neural networks, GNN, different
types of GNN, as well as their applications.

2.1. Ride-hailing Simulation
Waiting time is an important indicator for the efficient im-

plementation of on-demand mobility concepts both from the
demand and supply perspectives. Customers prefer choosing
an on-demand mobility service (e.g., a taxi) if the waiting
time is reasonable. On the supply side, the service providers
attempt to place the taxis and dispatch them in the area
where existing suppliers do not meet the customers’ expec-
tations (long waiting times). Since waiting time data is a



H. Sadid / Junior Management Science 10(2) (2025) 462-490464

core advantage of a service provider, this data is not shared
openly. Meanwhile, accessing such data for academic pur-
poses is cost-deficient, thus, an efficient approach is to gen-
erate waiting time data using traffic simulation models.

There are a variety of traffic models (macro-, meso-, and
microscopic) to simulate and evaluate the implementation
of a mobility concept (H. U. Ahmed et al., 2021; Grau &
Romeu, 2015; Jing et al., 2020). However, selecting an ap-
propriate traffic simulation tool depends on whether it is free
to use, and include multi-mode simulation. In addition, the
tool should be implemented in large-scale network, and be
computationally efficient. Hence, in this study, we select an
agent-based simulation tool (MATSim) with functionality to
model different on-demand mobility concepts (Horni et al.,
2016).

2.1.1. Agent-based Modelling
In this study, we use the Multi-Agent Transport Simula-

tion (MATSim) tool to model the on-demand mobility service
and extract waiting times. MATSim is an agent-based mod-
elling framework with an iterative, co-evolutionary learning
approach, where each agent attempts to maximize their daily
utility by selecting from the set of planned activities. Agents
receive rewards (positive scores) for performing scheduled
activities and penalties (negative rewards) for long traveling
or late arriving to an activity. After each iteration, agents
score their executed plans with a resulting score. By learn-
ing from the experience, agents try to either adjust their
plans (e.g., choosing a new route, selecting another mode)
or choose among the best plans based on their scores (Horni
et al., 2016).

In MATSim, a simulation run requires three input files
namely: the configuration file, the population file, and the
network file. The configuration file is the core input that as-
signs the simulation settings under which the simulation is
carried out (HÖrl, 2017). The population file describes the
daily plans of each agent by providing information about the
socio-demographic attributes as well as their daily trips. The
network file contains the links and nodes of the study area
including specific information about the road network (type,
capacity, mode, etc.).

initial
demand

analysesmobsim scoring

replanning

Figure 1: MATSim execution loop, source: (Horni et al., 2016)

The typical execution loop of MATSim is shown in Fig-
ure 1. The initial demand (population file) is inserted into
the loop, where the simulation, scoring, and replanning of
agents’ plans are executed. In the first stage, all agents are
moved along a physical network using Mobility Simulation
(MobSim) unit. MobSim utilizes a spatial queue-based ap-
proach for traffic simulation without considering the micro-

scopic driving behavior (car following and lane changing be-
haviors). In the scoring module, each agent’s plan receives a
reward using a utility function (e.g., performing an activity
means a positive score, traveling gets negative rewards, etc.).
Finally, the replanning module enables some agents to either
adjust their existing plans or choose among the best plans
(Horni et al., 2016). An example of the scoring scheme is
shown in Figure 2.
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Figure 2: Scoring function representation, source: (Horni et al.,
2016)

2.1.2. Taxi Modelling in MATSim
MATSim provides several extensions to model on-demand

mobility services (Bischoff et al., 2017; Ruch et al., 2018,
2021). For taxi modelling, we utilize the dynamic vehicle
routing problem (DVRP) extension integrated into MATSim
by Maciejewski and Nagel, 2012. When a request with a co-
ordinate and time is sent into the dispatching algorithm, the
algorithm searches for a vehicle that can serve the request
within a defined maximum waiting time (for more details
on how the dispatching algorithm functions, readers are re-
ferred to (Maciejewski & Nagel, 2012)). To run a simple taxi
simulation in MATSim, despite three main files (config, pop-
ulation, and network), we require the taxi location file to
be added into the simulation framework. Worth mentioning
that the taxi demand is defined within the population file, by
modifying the mode choice of agents to taxis. The number
of taxis in the network to serve a specific mode share of taxi
demand is selected based on the minimum number of empty
taxis during the peak hour demand.

When a request is submitted into the dispatching system,
the dispatching algorithm assigns a taxi to this request. Once
the taxi reaches a passenger and picks up the passenger, the
taxi trip begins. The difference between the time a request is
submitted and picked up is defined as the passenger waiting
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time. In this thesis, we try to extract the taxi waiting time for
all agents under different demand scenarios.

2.2. Artificial Neural Networks (ANNs)
2.2.1. The basics of neural networks

Neural networks are a set of algorithms inspired by the
human brain to mimic the relations and patterns from data
(Maind & Wankar, 2014). Artificial neurons are the basic
units of the neural network and are based on the Perceptron
(Rosenblatt, 1957). The structure of an artificial neuron is
displayed in Figure 3. Similar to biological neurons, a simple
processing unit receives the input information and generates
an output depending on the inputs. Overall, the information
processing is conducted in five steps: First, the processing
unit obtains the information as inputs h1, h2, h3, ..., hn. Sec-
ond, each input is weighted by its corresponding weight de-
noted as w1, w2, w3, ..., wn. Third, a bias term b is added to
the sum of all weighted inputs. Fourth, a non-linear activa-
tion function is applied and finally, the output y is generated.
Mathematically a neuron output is expressed as:

y j = σ

�

n
∑

i=1

hi .wi + b j

�

(1)

where y j is the output of neuron, σ is the activation function,
hi is the input information, wi is the corresponding learnable
weight of neuron i, b j is the bias term, and n is the number
of inputs.

+

inputs

weights

transfer
function

bias

activation
function

output

Figure 3: Illustration of an artificial neuron, perceptron. The input
features are multiplied with the corresponding weights and the
sum is added with a bias b, which then passes to an activation

function. The outcome is the output value of the neuron.

The overall structure of neural networks consists of a
number of interconnected neurons, which are arranged in
at least three different layers namely: input layer, hidden
layer(s), and output layer as shown in Figure 4. The input
layer acts as an interface between the data and the network,
and no calculation is done in this stage. The hidden layer(s)
contains a predefined number of connected neurons, which
transmit the information from the input layer to the neigh-
boring hidden layers and then to the output layer. Finally, the

output layer presents the results of the information process
and depending on the type of prediction and the activation
function may have different dimensions.

input layer output layer

hidden
layers

Figure 4: The structure of a fully connected 3-layer neural
network. Source: (Saracoglu & Altural, 2010)

The connection between neurons in the hidden layer cat-
egorizes the neural networks into feed-forward and feedback
networks. In a feed-forward neural network, information is
fed in a forward direction from the input layer to hidden
layers and finally to the output layer. The output of each
neuron in the hidden layer is transmitted to the next neuron
in the next layer. This continues until the information pro-
cess reaches the output layer. On the other hand, in a feed-
back network, the information can be transmitted in both
directions, from hidden layer l to hidden layers l − 1 and
l + 1. In a feedback network, it is possible to create loops,
where information can propagate continuously until an equi-
librium condition is reached. Worth-mentioning that neural
networks are widely used in many learning tasks including
pattern recognition, classification, regression, signal process-
ing, and more. In this section, we present multi-layer percep-
tron (MLP) in detail. MLP will be further used in this master
thesis as a comparison method.

2.2.2. Multi-layer Perceptron (MLP)
MLP is a feed-forward artificial neural network that is

comprised of connected layers namely: an input layer, one or
more hidden layers, and an output layer (Bishop, 1995). In
a fully-connected MLP, every neuron is linked to the consec-
utive neurons in the next layer. Depending on the prediction
task, the output layer predicts and/or classifies the samples.
In case, the MLP is used for classification purposes, the Soft-
max and its variants are utilized as the activation function in
the output layer. For numerical prediction, however, Recti-
fied Linear Unit (ReLU) is the most used activation function.
The details of some activation functions are described at the
end of this section. Formally, in a (K + 1) layers perceptron
as depicted in Figure 5, where one input layer, (K) hidden
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layers, and one output layer are structured, the information
processing of neuron (i) in layer (k) is expressed as:

yk
i = σ

 

m(k−1)
∑

j=1

yk−1
j .wk

i, j + bk
i,0

!

(2)

where (yk
i ) is the output of neuron i in layer k, σ is the ac-

tivation function, ml denotes the number of neurons stacked
in hidden layer k, wk

i, j is the weight from the neuron j in layer

(k−1) to the neuron i in the layer (k), and bk
i,0 is the bias for

the neuron i in layer k.

K

K

K

K

K
K

K

K

Figure 5: The structure of a fully connected MLP with K+1 layers,
D inputs and C output neurons. Adopted from (Stutz, 2014)

The MLP model requires a training procedure to predict a
realistic output. The training process takes advantage of the
true values and/or labels of samples, and tries to minimize
the difference between the predicted and true values using a
loss function. Let’s assume ŷ as the MLP output and y as the
true value (target), the backpropagation algorithm attempts
to change the learnable weights wi j , as well as the bias b in
such a way to minimize the loss function L. Backpropagation
algorithms are based on gradient descent and aim to optimize
the model by converging the loss function to zero.

2.2.3. Activation Functions
Activation functions are the most important features of

deep learning algorithms. In ANNs, the activation function
of a neuron determines the output of that neuron with the
given set of inputs, by simply mapping weighted inputs into
an output. There are many activation functions in the liter-
ature, however, in this section, we present the widely used
activation functions.

Sigmoid Function

The sigmoid function is a special form of logistic function
which converts the model outputs into a probability score
(between 0 and 1). As shown in Figure 6 (a), the sigmoid
function generates a S-shaped curve and has a non-zero gra-
dient throughout its domain. Hence, this function is a good
candidate when applying the backpropagation algorithm.

f (x) =
1

1+ e−x
(3)

Rectified Linear Unit (ReLU)

ReLU is a non-linear activation function that returns 0 if
it receives any negative input, and returns the input value for
any positive values (see Figure 6 (b)).

f (x) =
§

0, i f x < 0
x , else (4)

Hyperbolic Tangent Function

The tangent hyperbolic function denoted as tanh maps
the input values between -1 and +1. Similar to the Sigmoid
function, it also creates a S-shape curve as shown in Figure 6
(c).

tanh(x) =
ex − e−x

ex + e−x
(5)

Heaviside Step Activation Function

The Heaviside step activation function is a type of thresh-
old function which generates the output 1 for positive inputs
and 0 otherwise as displayed in Figure 6 (d).

f (x) =
§

0, i f x < 0
1, i f x ≥ 0 (6)

2.3. Graph Neural Networks (GNNs)
Over the past decade, deep learning paradigms such

as convolutional neural networks (CNNs) (Lecun & Ben-
gio, 1995), recurrent neural networks (RNNs) (Hochreiter
& Schmidhuber, 1997), and autoencoders (Vincent et al.,
2010) have become trending topics in artificial intelligence
and machine learning. The superior performance of deep
learning in many domains such as object detection, machine
translation, speech recognition, etc., is partially related to the
recent advancement in computational resources, the avail-
ability of big data, and the power of deep learning algorithms
in extracting latent representation from Euclidean data. Al-
though deep learning algorithms could efficiently replicate
the hidden patterns of Euclidean data, their utilization for
applications where data are generated from non-Euclidean
domains in form of graphs is challenging (Bronstein et al.,
2017).

Graphs such as social networks (Y. Wu et al., 2020), bio-
logical and chemical networks (Fout et al., 2017), transport
networks (K. Chen et al., 2021; Jin, Yan, et al., 2021; Q.
Wang et al., 2021), and other applications (Dai et al., 2018)
are complex data structures that have created important chal-
lenges on existing deep learning methods (Zhou et al., 2020).
These challenges include the irregularity of graph structure,
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Figure 6: Plots of (a) Sigmoid, (b) ReLU, (c) tanh, and (d) Heaviside step activation functions

complex relationships, and interdependencies among the ob-
jects of a graph, as well as large-scale graphs (Jiang & Luo,
2021; Liu & Zhou, 2020; Z. Wu et al., 2021; Zhou et al.,
2020). Hence, there is an increasing interest in extending
the existing deep learning algorithms to mimic the graph
data. Graph Neural Networks (GNNs) are widely used and
the most successful in learning graphs data in various appli-
cations. In this section, we explore the basics of graph theory,
GNNs, and different types of GNNs and their applications.
This literature review aims to develop the methodology of
this master thesis, which is described in the next chapter.

2.3.1. Graphs
Before introducing the GNNs, we briefly discuss the struc-

ture of a graph. A graph is a data structure that consists of
two components namely vertices (nodes) and edges. A graph
G can be defined as G = (V, E), where V is the set of nodes,
and E are the edges between them. The type of dependency
between nodes categorizes the graphs into directed and undi-
rected graphs. The information regarding the connection of
nodes is often represented by adjacency matrix A. In a di-
rected graph, all edges are directed from one node to an-
other, whereas in an undirected graph, connected nodes are

directed by a pair of edges with inverse directions (Z. Wu et
al., 2021).

(a) (b)

Figure 7: An illustration of (a) undirected, and (b) directed graphs

2.3.2. Graph Embeddings
Graph embedding is a method which is used to transform

graph elements and their features into a low-dimensional
space. The main goal of graph embedding is to map the origi-
nal graph into a more computationally efficient format while
keeping the original graph characteristics including the ge-
ometric relations and features of the graph (Gharaee et al.,
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2021; W. L. Hamilton, 2020; Hoff et al., 2002; Khoshraftar
& An, 2022). Hence, the similarity in the embedding space
approximates similarity in the graph or network.

The graph embedding could also be described using the
encoder-decoder framework. An encoder model maps each
graph element (i.e, nodes) into a low-dimensional vector
or embedding. Whereas a decoder model takes the low-
dimensional graph embeddings in the latent space and uses
them to rebuild information about each node’s neighborhood
in the original graph. There are different embedding meth-
ods proposed in the literature. Khoshraftar and An, 2022 cat-
egorized graph embedding into traditional [e.g., Node2vec
(Grover & Leskovec, 2016), Deepwalk (Perozzi et al., 2014),
Graph factorization (A. Ahmed et al., 2013), Line (Tang et al.,
2015), etc.] and GNN-based [e.g., RecGNN (Scarselli et al.,
2009), GCN (Kipf & Welling, 2017), GraphSAGE (W. Hamil-
ton et al., 2017), GCRN (Seo et al., 2016), DGCN (Zhuang
& Ma, 2018), GAT (Veličković et al., 2018), and more] ap-
proaches. For more detailed information, readers are re-
ferred to (W. L. Hamilton, 2020; W. L. Hamilton et al., 2017;
Khoshraftar & An, 2022).

2.3.3. The Concept of GNN
GNNs are deep learning methods operated for graph

structure data. The basic idea of GNN is to iteratively update
the representation of a node by aggregating its own repre-
sentation and the representation of its neighboring nodes.
GNNs use the representation of graph data including the
node features and the connection between nodes. The out-
put of a GNN model is the new representation of each node
called embedding which contains the structural and feature
information of other nodes. More specifically, each node
knows about other nodes, the connection of nodes, and its
context to the graph. The embeddings are further used for
prediction.

The GNNs learn the representation vector of a node (hv)
by combining its own features and the neighboring node fea-
tures (so-called message passing) with two important func-
tions:

• AGGREGATE: The aggregate uses the states of all di-
rect neighbors (u) of a node (v) and aggregates them
in a specific method.

• UPDATE: The ‘’update” operation uses the current state
in time step (k) and combines it with aggregated neigh-
bor states.

Within each message passing iteration in a GNN, a hidden
embedding (h(k)v ) related to each node vεV is updated based
on the information aggregated from the v node’s neighbors
(N(v)). The general framework of the GNN can be defined
mathematically as follows:

hv
(k) = U PDAT E(hv

(k−1),
AGGREGAT E

��

hu
(k−1) : u ∈ N(v)

	�

)
= U PDAT E(k−1)

�

hv
(k−1), mN(v)

(k)
�

(7)

where m(k)N(v) is the message that is aggregated from the v’s
neighborhood (N(u)).

More specifically, at each iteration k, the AGGREGATE
function takes the information of each node (v) from its
neighborhood N(v) and generates a message m(k). The em-
beddings of node (v) in iteration k− 1 is combined with the
message m(k) by the UPDATE function. The output of this
process is the updated embeddings of node v (h(k)v ). Worth-
mentioning that at iteration k = 0, the initial embeddings
of every node is basically the input features of all nodes
(h(0) = xu). The final output after K iteration describes each
node’s embeddings in the embedding space.

Depending on the AGGREGATE and UPDATE operations,
there are many variants of GNN models proposed in the lit-
erature. According to Z. Wu et al., 2021, GNNs are catego-
rized into four groups namely: Recurrent GNN (RecGNN),
Convolutional GNN (GCN), graph autoencoders (GAEs), and
Spatio-temporal graph neural networks (STGNNs). In this
thesis, we present the most relevant types of GNN including
convolutional GNN, recurrent GNN, and graph attention net-
works. However, before presenting different types of GNNs,
we briefly explain the basic AGGREGATE and UPDATE func-
tions of GNN.

According to Merkwirth and Lengauer, 2005 and Scarselli
et al., 2009 in the basic GNN, the AGGREGATE function con-
tains trainable parameters which is defined as follows:

hv
(k) = σ(W (k)

sel f hv
(k−1) +W (k)

neigh

∑

v∈N(v)

hv
(k−1) + b(k)) (8)

where W (k)
sel f , W (k)

neigh ∈ R
d(k)×d(k−1)

are parameters matrices and
σ shows an element-wise non-linearity function such as tanh,
ReLU, and b(k) is the bias term which is often eliminated for
simplicity of the model.

In the basic GNN framework, the message passing is con-
ducted similarly to a multi-layer perceptron (MLP), where
linear operations are sent to a single element-wise non-
linearity operation. More specifically, a linear combination
of the sum of information received from the neighboring
nodes and the previous embedding of a node itself is fol-
lowed by a non-linear function.

Moreover, to omit the explicit update step and perform
the message passing by only the aggregation function, the
self-loops approach is proposed. In this approach the update
function is defined through the aggregation method and the
message passing is expressed as:

hv
(k) = AGGREGAT E

��

hu
(k−1),∀u ∈ N(v)∪ {v}

	�

(9)

Besides these two general methods, there are other gen-
eralized methods proposed for the AGGREGATE operator(i.e,
neighborhood normalization). In the following subsections,
we introduce different types of GNN mentioned in the above-
section together with their aggregation methods.
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Figure 8: Illustration of the node embedding of a graph with 6 nodes, 7 edges, and each node has N features.

Figure 9: Overview of encoder-decoder framework. source: (W. L. Hamilton, 2020)

Figure 10: The information aggregation of a single node from its local neighborhood. source: (W. L. Hamilton, 2020)

Graph convolutional networks (GCNs)

GCN is the most popular GNN type which is extracted
from the idea of the normal convolutional network. GCN can
handle the cyclic mutual dependencies architecturally using a
pre-defined number of layers with different weights in each
layer. There are two types of GCN proposed in the litera-
ture namely spectral-based and spatial-based GCN. The first
spectral-based method was proposed by Bruna et al., 2013.
In this approach, graph convolution is defined by introducing
filters from the view of graph signal processing. The informa-
tion propagation in spectral GCN could be similar to signal
propagation along the nodes. In spectral GCN, the convolu-
tion operation is defined in the Fourier domain by calculating
the Eigen-decomposition of graph Laplacian matrix (for in-

depth details, the reader is referred to (Z. Wu et al., 2021)).
On the other hand, spatial-based approaches consider

the information propagation by operating on spatially close
neighbors to define graph convolution. In the method pro-
posed by Kipf and Welling, 2017, a symmetric-normalized ag-
gregation with self-loop update operation is employed. The
message-passing function of the GCN model is expressed as
follows:

hv
(k) = σ

 

W (k)
∑

u∈N(v)∪{v}

hu
p

|N(v)| |N(u)|

!

(10)

Worth-mentioning that the simplified spectral-method
proposed by Kipf and Welling, 2017 could also be consid-
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ered as spatial-based GCN. The details of this GCN method is
presented in the methodology section of this master thesis.

Recurrent Graph Neural Networks (RGNN)

RGNN is a particular class of recurrent neural networks
(RNNs) that is applied to sequential data. RGNN uses the
same set of parameters as in GNN recurrently over nodes in
a graph to extract high-level node representations. The con-
ventional prediction methods of RNN encounter computa-
tional challenges, especially for long-term information prop-
agation. Thus, to address this issue and reduce the explod-
ing and gradient vanishing problems, Gated recurrent unit
(GRU) and Long-short term memory (LSTM) are introduced.
GRNN employed with a GRU or LSTM is called gated GNN -
GGNN.

GGNN reduces the recurrence to a fixed number of steps
and also it does not limit the parameters for convergence.
The general framework of GNN in case it is employed with a
GRU unit is defined as:

hv
(t) = GRU

 

hv
(t−1),

∑

u∈N(v)

Wh(t−1)
u

!

(11)

Since there is a strong interdependency between the ele-
ments of traffic in the transport network, a gated method is
effective to be used for capturing the sequential relationship
of the data.

Graph Attention Neural Networks (GAT)

In the aggregation process, the basic GNN framework
puts equal weight on all neighbor nodes. However, not all
neighbors are equally important. The aim of GAT is to ap-
ply attention to neighbor nodes to indicate the importance
of each node during the aggregation step. For instance, in
a road network, several links connecting to one intersection
might have different traffic load, and thus should be captured
with different scores. Veličković et al., 2018 proposed atten-
tion weights which define a weighted sum of the neighbors
into the propagation steps. In the approach, the aggregated
message passing is expressed as:

ai j =
ex p(σ(a⊤[Whi]||[Wh j]))

∑

kϵNi
ex p(σ(a⊤[Whi]||[Whk]))

(12)

where ai j is the attention coefficient of node j to i, Ni indi-
cates the neighborhoods of node i in the graph. In addition,
σ is the non-linear activation function (LeakyReLU), hεRN×F

is the input node features (N: number of nodes, F: dimension
of the features), W is the weight matrix, and a is the learn-
able attention vector. Thus, the final output feature of each
node is predicted as follows:

hi = σ·
�

∑

jϵNi

αi jWh j

�

(13)

In addition, the multi-head attention mechanism simi-
lar to (Vaswani et al., 2017) stabilizes the learning process.
Thus, in each layer, the K-independent attention mechanism
(each with different parameters) is applied to compute the
feature-wise aggregated output (normally by average). The
equation 13 is transformed, and their features are concate-
nated as follows:

hi =
K
∐

k=1

σ·
�

∑

jϵNi

αk
i jW

kh j

�

(14)

where
∐

indicates concatenation, and K is the number of
attention mechanism.

Since multi-head attention is performed on the final pre-
diction, therefore the average of the resulting attentions are
considered. The final representation after averaging takes
the following form:

hi = σ·
� 1

K

K
∑

k=1

∑

jϵNi

αk
i jW

kh j

�

(15)

An illustration of the aggregation process of multi-head
attention layer is shown in Figure 11.

Spatio-temporal Graph Neural Network (STGNN)

In real-world applications, graphs could have dynamic
characteristics both in terms of the graph structure and fea-
tures (Z. Wu et al., 2021). For instance, in a transport net-
work, the link features (e.g., speed, travel time, traffic flow)
change during the day and thus it is required to capture
both the spatial dependency, and the temporal variation of
the graph. Spatio-temporal graph neural networks (STGNN)
have attracted attentions in mimicking the spatial and tem-
poral properties of graphs simultaneously. In many STGNN
related studies, GCN are integrated with a temporal block
(e.g., GRU, LSTM) to capture the spatial and temporal de-
pendencies respectively.

STGNNs have been implemented in many applications in-
cluding transportation (Li et al., 2018; X. Wang et al., 2020;
Yu et al., 2018), driving behavior prediction (Jain et al.,
2016), environment monitoring (Jin, Sha, et al., 2021; S.
Wang et al., 2020), human action recognition (S. Yan et al.,
2018) and more. Figure 12 shows an illustration of STGNN
which is comprised of GCN for capturing spatial dependency,
and a temporal block- GRU for representing the temporal fea-
tures.

To summarize, GNNs are powerful techniques in captur-
ing graph data. For mimicking only the spatial dependencies
of the graph data, GCN and GAT could be applied, where for
capturing the temporal variation of a graph data, STGNNs are
widely utilized in literature. Since our extracted simulation-
based data will only consider a request point with its asso-
ciated waiting time without considering the variation of the
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(a)

(b)

Figure 11: A display of GAT model (a) the attention mechanism of the model, and (b) the multi-head attention differentiated with
different colors by node 1 and it’s neighbors. Source: (Veličković et al., 2018)
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Figure 12: A sample structure of STGNN, where GCN captures the spatial dependenciy , and the temporal variation is represented by
GRU, (own illustration)

waiting time in different time periods during the day, we uti-
lize a model to predict the spatio-operational dependencies of
the graph data in regards to the waiting time values. Hence,

GCN and GAT model are the best candidates and are utilized
in this master thesis.
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3. Methodology

The methodology of this master thesis is comprised of
four major sections namely: (i) the data generation, (ii) the
proposed framework, (iii) the model evaluation, and (iv) the
model transferability. In the data generation section, we in-
troduce the process of ride-hailing simulation and extracting
the waiting time data, followed by the map matching in QGIS
and finally the transformation of the data for the final imple-
mentation in the proposed model. The proposed framework
is the main contribution of this master thesis, which describes
the models that are used in the experimental setup in the next
chapter. Third, the model evaluation section presents the de-
sign of the loss function as well as evaluation matrices for the
assessment of the proposed models’ performance. Finally, in
the model transferability section, the analysis of generaliza-
tion capability of the trained models on a different dataset is
described.

3.1. Data Generation
In this study, we utilize MATSim tool to model the ride-

hailing and extract requests’ waiting time. The simulation
process contains running different scenarios including de-
mand and supply variations as well as matching the outputs
of the simulation runs with the road network geometry.

3.1.1. Ride-hailing simulation in MATSim
To conduct a simple simulation run in MATSim, config,

population, and network files are required as describe in sec-
tion 2.1.1. To include taxi modelling, we further need the
definition of taxi demand within the population file and the
taxi distribution data. The definition of the demand and op-
timal supply is a crucial step in extracting the waiting time
data. Foremost, we extract the waiting time information un-
der different penetration rates of ride-hailing services, with
three different supply policies, namely: (i) Optimal supply,
(ii) 20% above optimal supply, and (iii) 20% less than the
optimal supply. This is done due to the fact, that we have
excess and shortages of supply in reality. A schematic of the
simulation scenarios including different demand and supply
is shown in Figure 13.

Theoretically, we need the waiting time of all agents in
the network, as for the proposed GNN, the waiting time in-
formation is needed for all nodes. However, a 100% pene-
tration rate of ride-hailing in the network generates a huge
number of empty vehicles driving in the network and thus
create a huge congestion. This of course results in unrealis-
tic waiting times. Hence, to avoid such an issue and mean-
while generate waiting time information for all agents, we
propose a method which extract waiting time for all agents,
however, not in one simulation setup, but under several simu-
lation runs. To clarify, let’s assume a service area where x% of
all agents use ride-hailing for their daily trip activities. How-
ever, it is not known which agents exactly use ride-hailing
and consequently any agent could be a potential candidate.
Thus, first we randomly select x% of all agents to use ride-
hailing and run the first simulation and store the resulting

10%

20%

Figure 13: Different scenarios for demand scales in terms of
ride-hailing penetration rates,and supply in terms of number of

vehicles.

output. Second, another x% of all agents are chosen where
they were not selected in step 1 and change their mode to
ride-hailing and conduct the second simulation run and same
here we store the output. Based on the value of x, a total
of n different plan files are generate and sent to the MAT-
Sim simulator. Using this approach, it is intended to have
ride-hailing requests for all agents but under x% penetration
rate, and meanwhile we achieve more realistic data. The fi-
nal extracted waiting times includes the waiting of request
for all agents, however, under x% penetration rate of ride-
hailing demand. Figure 14 shows the schematic overview of
the agents plan creation and simulation.

On the supply side, determination of the optimal number
of ride-hailing vehicles follows a trial and error approach.
Depending on the network and demand size, several sim-
ulation runs have been conducted to find an optimal num-
ber of vehicles. First, we run the model with bigger fleet
sizes and check the number of vehicles being idle for most
of the day. Similarly, simulation runs with smaller fleet sizes
are also done. Hence, simulation runs continue from bigger
and smaller fleet sizes until an optimal number of vehicles is
reached.

3.1.2. Map Matching
The outputs of various simulation scenarios are the infor-

mation of requests points with their locations (home, work,
leisure, etc.) and simulated waiting times. To allocate these
requests points to their nearby links and nodes, QGIS tool
is used for the purpose of map matching. The distribution of
the request points could have different relations to the nearby
links. First, several request points could be located nearby a
single link, which requires averaging the waiting times and
then allocating a single waiting time to the link. Second,
some request points, are far away from the nearby links and
thus, it is difficult to programmatically allocate them to those
links. To address this issue and better allocate request points
to corresponding links, we propose creating grid cells.
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Figure 14: Schematic overview of the ride-hailing demand creation and MATSim simulation

However, since we conduct node prediction in our final
model, and this requires obtaining the waiting time informa-
tion from the links emerging from a single node, it saves one
step to directly acquire the waiting information for each node
from the grid cells rather than the links. Hence, the node-
level waiting time information will be directly extracted from
the grid cells.

We created grid cells of 250*250 meters on our network,
these grid cells contain both nodes, and request points as
shown in Figure 15. First, the average waiting time of each
cell is determined by counting the number of request points
in each cell and then the attributes of request points are av-
eraged. Of course, it is only needed to know what is the av-
erage waiting time for ride-hailing in each cell. Second, after
generating the waiting time of each cell, we assign them to
the containing nodes in a cell. For instance, let’ assume that
cell (a) contains three different nodes, thus the waiting time
of those nodes could be potentially the same as the grid cell
itself. Worth-mentioning that we deal with missing cell wait-
ing time by assigning the nearby cell waiting time to it.

Meanwhile, the census data is used to extract the popu-
lation density in each grid cell. This information is impor-
tant, since ride-hailing request closely relate to the popula-
tion density of the area. Similar to waiting time extraction
for each node, we allocate the population density around a
node by assigning the corresponding cell population density
to it.

250 𝑚

𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝐺𝑟𝑖𝑑𝑐𝑒𝑙𝑙

2
5

0
 𝑚

Figure 15: Illustration of a sample grid cells, request points, and
road network

In addition, to include the ride-hailing vehicles distribu-
tion in our features, we map the vehicles (assigned randomly
in the network during the simulation) in our network. Since,
vehicles are assigned to links and their exact locations are not
known, the link ID information is used to relate availability of
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a vehicle to a node using a dummy variable. We allocate the
information from a link (0 if there is no vehicle to the link,
and 1 otherwise) to the associate node and consequently cre-
ate the vehicle distribution feature for the nodes.

To summarize, in this step the information for each node
including population density, vehicle distribution, and the
waiting time are created. The first two information will be
utilized as a constant features of the nodes, where waiting
time is the targets of our data for model training.

3.1.3. Feature Generation and Data Transformation
For the implementation of a GNN pipeline, we need a set

of nodes with their features and the links connecting them.
In a road network, most of the features are associated with
links in the graph, whereas for the intersections (nodes), only
a few pieces of information such as the location, type, etc
are available. Therefore, for the GNN model, we should per-
form link prediction by using a dual graph to change the
nodes to links and the links to nodes. However, the appli-
cation of a dual graph changes the real typology of a road
network. Thus, we propose a method so-called flow-out ap-
proach which aggregates the information of the links to the
corresponding node.

The flow-out approach is straightforward. Each link is in-
deed emerging from a node and sinks to another node. Sup-
pose, four links are emerging from a single node (e.g., node
u in Figure 16), thus, the average of the attributes of these
links could be assigned as the aggregated features of the cor-
responding node. As depicted in Figure 16, the aggregated
attributes of the node u and v are calculated as follows:

h(u) = mean(h(eu,v), h(eu,1), h(eu,2), h(eu,3), h(eu,4))

h(v) = mean(h(ev,u), h(ev,5), h(ev,6), h(ev,7))
(16)

where h(u) and h(v) are the aggregated features of node u
and v respectively, and h(eu,v), h(eu,1),...,h(eu,4) are the features
of emerging edges from node v.

Using this approach,the graph data are successfully cre-
ated, which comprises nodes with their features and a set of
links that shows the connection between the nodes. Worth-
mentioning, that except for population density, and vehicle
distribution which come from the grid cells and node degree
attribute which belongs to each node, all other features are
aggregated from the corresponding links. A sample presen-
tation of the feature data as well as the edge information are
depicted in Table 1.

Finally, the data is further processed and prepared for the
final implementation. The detailed description of the data
transformation is presented in section 4.5.

3.2. Proposed Framework
The proposed framework in this master thesis consists of

two components, the embedding module, and the spatial de-
pendency learning module. The embedding module aims to
map the constant and variable properties of each node to a
low-dimensional space and to further insert them into the

learning module. On the other hand, the spatial dependency
learning module requires the nodes embedding and edges in-
formation for node representation learning. In the following
sections, each module is described in details.

3.2.1. Embedding Module
Since waiting time for ride-hailing requests is affected by

many spatial factors such as the location of the request, the
population density of the request area, connectivity of the
nearby roads as well as the operational factors including ca-
pacity of links, speed limit, and ride-hailing vehicles distri-
bution in the network. We initialize the node embedding by
concatenating these features and mapping them into a low-
dimensional latent space (one-dimensional tensor).

The embedding of nodes can be formulated as follows:

hv = σ(Wv · [L ∥C ∥S ∥ P ∥V ∥ T∥ F ] + bv) (17)

where Wv and bv are the learnable weight and bias respec-
tively, || is the concatenation operator, and L, C , S, P, V, T, F
are the node features (please see Table 3 for description of
each feature).

3.2.2. Spatial Dependency Learning Module
This module is the core contribution of this master thesis.

The main function of this module is to predict the waiting
time based on given spatio-operational attributes of the road
network by implementing both GCN and GAT.

a) Graph Convolutional Network (GCN)

In a traffic network, nearby roads are more likely to share
common attributes such as capacity, speed limit, and more.
Thus, closely located nodes and links share both spatial and
operational features. On the other hand, a GCN model with
its l−layers is capable to aggregate and average the hidden
representation of each node with its neighbors. We can apply
the GCN approach, to predict the feature of a single node by
aggregating its own features and the features of the neigh-
boring nodes. Let’s consider a graph G = (V, E) with the
following descriptions:

• A feature matrix H(0) = X inεR
N×D, with N : number of

nodes, and D : number of input features.

• An adjacency matrix A which describes the graph struc-
ture and their relations.

The output of the model H(l)εRN×F can be generated as
follows:

H(l) = f (H(l−1), A) (18)

with H(0) = X in the initial nodes’ representations, H(L) = Xout
is the final nodes’ representations, and L is the number of
convolutional layer.
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Figure 16: Illustration of the flow-out approach and allocation of links attributes to corresponding nodes

Table 1: A sample presentation of the graph data (node features and edge information)

Node Capacity speed limit ... Vehicle
1 500 50 0
2 300 30 2
3 620 70 1

(a)

Link fromNode toNode
1 60 81
2 123 5
2 6 51

(b)

In this master thesis, we utilize the propagation rule in-
troduced in (Kipf & Welling, 2017) as follows:

H(l+1) = f (H(l), A) = σ
�

D̂−
1
2 ÂD̂−

1
2 H(l)W (l)

�

(19)

with Â= A+ I , where I is the identity matrix, and D̂ is diag-
onal node degree matrix of Â.

The implementation of this GCN model could be simply
described in three steps namely: (i) Feature propagation, (ii)
Feature transformation, and (iii) Activation layer.

Feature propagation: In each layer, we take the average of
the feature vectors of the nodes’ neighbors.

H(l) = ÃH(l−1)

where Ã= D̂−
1
2 ÂD̂−

1
2 is the normalized adjacency matrix in-

cluding the self loops.

Feature Transformation: Each layer contains learnable
weight matrix, which linearly transform the smoothed hid-
den feature representation to the next layer.

H̃ = H(l)W (l)

where H̃ is the hidden layer representation.

Activation Layer: To ensure non-linearity, a non-linear com-
ponent is added to the propagation and thus the final hidden
feature representation is expressed as:

H(l) = σH̃

where σ is the non-linear activation function such as ReLU,
sigmoid, tanh and more.

Based on the structure of our data, we consider a two-
layer convolution operation similar to (Kipf & Welling, 2017).
The schematic diagram (Figure 17) shows the two-layer GCN
utilized in this master thesis.

The overall forward model takes the following forms:

H(1) = f (H(0), A) = σ1

�

ÃH(0)W (0)
�

,

H(2) = f (H(1), A) = σ2

�

ÃH(1)W (1)
�

combining the above two equations, the compact form of the
representation is as follows:

H(2) = σ2(Ãσ1(ÃH(0)W (0))W (1)) (20)
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Figure 17: Overview of how a single node aggregates messages from its local

Tanh and Relu are selected as the activation functions
(σ1 and σ2) respectively. The description of these activation
functions are described in section 2.2.3.

b) Graph Attention Network (GAT)

In this model, we consider the attention mechanism in
the feature propagation step. The attention mechanism pro-
posed by Veličković et al., 2018 calculates the graph attention
coefficient and adds it to the GCN operation. For details, the
reader is referred to section 2.3.3. Similar to GCN model im-
plementation, the GAT application could also be simply de-
scribed in three steps, however, with adding a relation coef-
ficient matrix.

Feature propagation: In each layer, we take the weighted
average of the feature vectors of the nodes’ neighbors.

H(l) = R̃H(l−1)

where R̃ is the relation matrix.

Feature transformation: The learnable weigh matrix is
added, which transforms the hidden feature embeddings
to the next layer.

H̃ = H(l)W (l)

where H̃ is the hidden layer representation.

Activation layer: A non-linearity component is added to the
propagation and thus the final hidden representation is ex-
pressed as:

H(l) = σH̃

where σ is the non-linear activation function.
Similar to section 3.2.2, we utilized a two-lyer GAT

model, and thus GCN operation can take the following form:

H(l+1) = σ(D̃−
1
2 R̃D̃−

1
2 H(l)W (l)) (21)

where σ is the activation functions, W (0) and W (1) are the
two learnable transformation matrices, and R̃ = mask(R) +
IN is the relation matrix. The mask is used to sparsify the
relation matrix as follows:

mask(R) =
§

Ri j , i f Ãi j > 0
0 , otherwise (22)

3.3. Evaluation module
During the training process for both proposed models

(GCN and GAT), we select Mean Absolute Percentage Error
(MAPE) as a loss function.

MAPE measures the percentage of average absolute error
in comparison to the predicted value (how large is the differ-
ence between the predicted and actual values in comparison
to the predicted value, see equation 25).

In addition, in this master thesis, we select three evalu-
ation matrices namely: (i) Mean Absolute Error (MAE), (ii)
Root Mean Square Error (RMSE), and (iii) Mean Absolute
Percentage Error (MAPE) to evaluate the proposed models.
MAE and RMSE are used to estimate the absolute error be-
tween the actual and predicted values, where RMSE is more
sensitive in capturing large errors. On the other hand, MAPE
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is used to measure the estimation accuracy based on the per-
centage error. For these three matrices, the lower values in-
dicate the better performance of a model. The definition of
each matrix is described as follows:

RMSE =

√

√

√ 1
N

N
∑

i=1

(Yi − Ȳ )2 (23)

MAE =
1
N

N
∑

i=1

�

�Yi − Ȳ
�

� (24)

MAPE =
100%

N

N
∑

i=1

�

�

�

�

Yi − Ȳi

Yi

�

�

�

�

(25)

where Yi and Ȳi are the predicted and true values of the i-th
sample respectively, and N total number of predictions.

3.4. Model Transferability
We train both the proposed and baseline models (de-

scribed in 4.7) with different datasets and evaluate the per-
formance of each model. However, to check the generaliza-
tion capability of the models, the best-trained model on the
source data is selected and applied to a different dataset (we
call it prediction dataset). The performance of each model
is then assessed with the new dataset. This method is called
transfer learning. Both the training datasets and the predic-
tion dataset have the same number of features, however, the
distribution of features varies among datasets.

4. Experimental Setup

In this section, we conduct an experiment to test the pro-
posed models (see section 3.2.2) using simulated waiting
time data. The following sections describe the study area,
the extracted simulation-based data, the experiment settings,
and methods for comparison which will be followed by re-
sults in the next chapter.

4.1. Study Area and Simulation Settings
In this master thesis, we utilize a synthetic MATSim model

of the city of Cottbus to model ride-hailing demand. Cottbus
is a city in the federal state of Brandenburg with around 100
000 inhabitants. The city is located roughly 110 km south of
Berlin. The Cottbus transport network as shown in Figure 18,
is comprised of 4470 nodes and 10729 links used for MATSim
simulation. The population file contains 70000 agents and
their work-related trips. To achieve more realistic results,
the ride-hailing simulation runs are conducted together with
the public transport lines which are operated within the city
and its close surroundings.

Furthermore, this thesis uses the DRT extension of MAT-
Sim, which performs a centralized, on-the-fly assignment of
vehicles to passengers as soon as the passengers’ request to
use the services. The ride-hailing is assumed to be door-to-
door service, where the maximum waiting time of a passen-
ger is set to 30 min. If a request is not served by any vehicles
within the pre-defined constraint, the request is rejected and
not considered in the simulation. In addition, vehicles are
assumed to operate the whole day (24 h), without consider-
ing the consumed time for fueling or charging, operational
issues or maintenance.

The data used for simulation runs as well as feature ex-
traction in QGIS are collected from different sources. Cottbus
network, agents plan file, and other MATSim-related files are
gathered from Institut für Land- und Seeverkehr (ILS) - TU
Berlin, and demographic information are used from the 2011
census data. In addition, OpenStreetMap is used as a base
map in all maps of this master thesis.

4.2. Simulation Runs
As discussed in section 3.1.1, various simulation runs for

different scenarios are conducted. On the demand side, 10%
and 20% of all private trips are set to ride-hailing, whereas on
the supply side, we have determined the optimum number of
vehicles for both demand cases (10% and 20%) to be 1000
and 2000 vehicles respectively. Moreover, we run an addi-
tional simulation run with 15% demand and 1500 vehicles
and extract another dataset (prediction dataset) to evaluate
the transferability of the models.

First, for a 10% demand scenario, we select randomly
10% of agents from the population file and change their
transport mode from private vehicle to taxi. To achieve the
waiting time of all agents, we create 8 different sets of plans’
files each with 10% taxi users, which contains 8*10% = 80%
of all agents. The remaining 20% of agents use public trans-
port for their daily activities, and therefore we do not change
their mode of transport. Each of these 8 plan files together
with one supply scenario (e.g., 750 taxis in the network) are
simulated in MATSim. In total, 8*3 =24 different simula-
tion scenarios have been conducted, and the sum of 24 trip
files has been generated. Each trip file corresponds to 10%
demand, and a certain supply in terms of the number of ve-
hicles. A trip file contains a set of information (e.g., person
ID, location, the start of trip, ...) for all generated trips dur-
ing the simulation. Since we are interested in only taxi trips,
we filter our data to include only the necessary information
about taxis (e.g., request ID, location, waiting time,...). For
each supply scenario, we concatenate 8 taxi trips data and as
a result, we achieve the final taxi requests data for 80% of
agents.

Similarly, for a 20% demand scenario, we select randomly
20% of agents from the population file and thus a total of 4
different sets of plans’ files are created, and the same pro-
cedure is repeated. To exclude outliers from our data, we
simply remove, waiting times which are less than a minute
and more than 30 minutes. Finally, we create 6 different trips
files (3 for 10% demand, and 3 for 20% demand), where each
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Cottbus city boundary

Links

Figure 18: The Cottbus city road network.

is differentiated with the number of taxis in the network and
these files are exported to QGIS for map matching.

4.3. Map Matching output
In the map matching process, we simply import 6 trip files

and add them as trip points on the Cottbus network. Each
point corresponds to a taxi trip request and the simulated
waiting time. We create the grid cells (250*250) over the
Cottbus network, and using the processing toolbox of QGIS
(join attribute by location), we assign each trip point to a grid
cell. The distribution of trip requests in grid cells is as shown
in Figure 19. For visualization purposes, we only show the
inner city map. Hence, for each trip file, a grid cell file is
generated.

Similarly, we plot the nodes over the grid cells and assign
each node to a grid. Consequently, the grid cell file includes
information about the nodes and trip points located in each
cell. Since it is possible that more than one trip point is lo-
cated in a grid cell, we take the average of trip points in a cell
and get the cell mean waiting time. Finally, each cell’s wait-
ing time corresponds to the node(s) waiting time located in
that cell. The average waiting time distribution throughout
the network using grid cells for two demand scenarios and
associated optimal supply cases after map matching in QGIS
is depicted in Figure 20.

On the hand, the taxi distribution file contains informa-
tion about the links to which the taxis are located. Since
the coordinates of taxis are not known, assigning a taxi to
a grid cell is not possible. Therefore, we simply merge the
taxi distribution file using the QGIS processing toolbox (join
attribute by field value) with the links file, and thus the new
link file will also have information on whether the link has a
taxi or not. As a result, for node feature extraction, we use
both the nodes’ features extracted from the grid cells, as well
as the information from the links file.

4.4. Features Generation
In the map-matching process, we successfully extract

each node’s waiting time information. As discussed in sec-
tion 3.1.3, to allocate link features to a node, we assign the
attributes of emerging links from a node using the QGIS pro-
cessing toolbox (join attribute by field value). As a result,
each node might contain features of different links including
length, capacity, speed limit, travel time, average traffic flow,
and vehicle availability. To have a unique features list for
each node, we take the mean of features allocated to each
node. Finally, the node file contains the feature (waiting
time) from grid cells, and link attributes from the link file.

Furthermore, features such as population density and
nodes’ location-related information are independent of the
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Figure 19: Illustration of the requests distribution under 20% demand and 2500 vehicles within Cottbus city.
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Figure 20: The average waiting time in each grid cell under: (a) 10% demand and 1000 vehicle, and (b) 20% demand and 2000 vehicles.

simulation output. We utilize census data which contains
the population density points corresponding to 100-meter

grid cells for Cottbus city. To estimate the population density
in our proposed grid cells (250*250), we import the census
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data and overlay them in our grid cells and simply sum the
values of population points in each grid cell. Meanwhile, we
extract the node-related information such as betweenness,
closeness, degree, and more by using the processing toolbox
of QGIS (network centrality) as displayed in Table 2. Worth-
mentioning that only degree and closeness are considered in
the final features set.

Finally, combined features of nodes could be categorized
into constant and variable features as presented in Table 3.
The constant features include node degree, closeness, the av-
erage length, capacity and speed limit of the links emerging
from a node, and average population density around a node,
where variable features depends on each simulation scenario.
The variable features contain ride-hailing vehicles distribu-
tion, average travel time and traffic flow of the emerging links
from a node.

We train and test the proposed models, with a total of
6 datasets each containing the ride-hailing demand and the
number of ride-hailing vehicles. Table 4 shows part of data
for 10% demand and 1000 ride-hailing vehicles.

Meanwhile, we investigate the correlation among the fea-
tures as well as between features and the waiting time for
10% and 20% demand datasets. As shown in Figure 21, there
is not a strong correlation between the features and the wait-
ing time in both datasets. However, length and travel time as
well as capacity and speed limit are strongly correlated with
each other.

In addition, to have a clear understanding of the waiting
time distribution in each demand and supply scenario, we
plot the histogram of each in Figure 22.

4.5. Data Transformation
After successful map matching of the ride-hailing request

in QGIS and extraction of the nodes’ features, the data is
ready for the GCN and GAT implementation. However, the
data will be further processed to easily implement them in
the deep learning pipeline. First, we load each dataset as our
node data, and network links as our edge data in python. The
node data includes node features and target values (wait-
ing times). We convert node features and target values to
Numpy arrays. Numpy is a Python library that allows easy
and efficient manipulation of arrays (Harris et al., 2020). The
Numpy arrays are required, since in most machine learning
techniques, they are the input of model. In addition, we use
row-normalization technique to normalize the features data.
A sample of transformed data is depicted in Table 5.

4.6. GCN and GAT settings
For the GCN model, We train a three-layer GCN as pre-

sented in section 3.2.2, and evaluate the performance of the
model with our datasets. We select randomly 40% of the
dataset for training, 30% for validation, and the rest for test-
ing. In addition, we integrate an optimization module (dif-
ferential evolution) to find the best set of hyperparameters.

Differential evolution (DE) is a stochastic population-
based optimization method which is used for global optimiza-
tion problems. DE does not require gradient information and

hence could be efficiently used for nonlinear optimization
problems (Georgioudakis & Plevris, 2020). The algorithm
iteratively searches the design space to improve a candidate
solution with regard to pre-defined targets. The candidate
solution moves around the design space to check whether an
improvement for the objective function is achieved. In case,
a new candidate solution outperforms its parent, it replaces
the parent, otherwise, it’s simply discarded. In this thesis,
the value of the objective function is the loss value of the
validation, where the input variables are the hyperparam-
eters. DE tries to change the hyperparameters within their
boundary conditions aiming to find the minimum loss value
for validation of the model.

The outcome of the optimization module for a 100 num-
ber of epochs depicts 53 hidden units, 0.0096 learning rate,
0.5 dropout rate for all layers, and 4e − 5 for L2 regulariza-
tion factor for the first layer. However, for simplicity, we use
64 as the number of hidden units, 0.01 learning rate, and 0.5
dropout rate.

Similarly, for the GAT model, we train a two-layer GAT
model. The split of the dataset for training, validation, and
testing remains the same as in the GCN model. Moreover,
we use the optimized hyperparameters obtained for the GCN
model to the GAT model, with additional hyperparameters
for GAT namely as K = 3 number of attention heads, and
α= 0.2 for leakyReLU activation function.

Both models take features and adjacency matrix as inputs
and predict numerical values as output. These numerical val-
ues are compared with the target values (true waiting times)
until the loss function is minimized. For both models, we
utilize Adam optimizer for minimization of the loss function.
Regarding parameters analysis, we perform a sensitivity anal-
ysis of different number of layers of GCN and number of hid-
den units in regards to the GCN model performance as well
as the number of attention heads and number of hidden units
for GAT model.

4.7. Methods for comparison
To verify the performance of the proposed models, we

compare them with two baselines namely: (i) regression, and
(ii) MLP models. The simple regression model takes the fea-
tures as the independent variables and the waiting time as
the dependent variable and creates a relation between them.
On the other hand, Multiple layer perceptron (MLP) is a sim-
ple fully connected neural network model which takes the
features as input and predicts the waiting time. In our ex-
periments, we utilize three number of layers and ReLU as the
activation function. The number of hidden units is same as
in GCN and GAT models.

4.8. Software and Tools
In this master thesis, we use Python programming lan-

guage to process the data and implement the proposed mod-
els. Python is a powerful programming language that has an
extensive collection of libraries for data processing, compu-
tation, and visualization. The machine learning frameworks
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Table 2: Description of the centrality features of the network nodes.

Node degree closeness betweenness eigenvector xcoord ycoord
60 0.000447 22629.9376 0 0 452370.2496 5747706.58
61 0.000447 7881.35775 0 0 447532.3292 5733172.71
62 0.000893 12573.66711 -5.56192E+12 0 452999.6389 5734564.663
63 0.00134 13370.23422 -5.74345E+12 0 455877.7776 5731834.515
64 0.00067 11899.66277 -4.2045E+12 0 454049.0625 5733308.502
65 0.00134 13336.2458 -3.51704E+12 0 455864.8711 5731921.305
66 0.00134 13520.31327 -5.92705E+12 0 456027.2457 5731850.125
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Figure 21: Correlation matrix among features in (a) 10% demand and 1000 vehicles, and (b) 20% demand and 2000 vehicles datasets.

Table 3: Description of the nodes’ features

Constant features Variable features
D: degree
Cl: closeness
L: average length
C: average capacity
S: average speed limit
P: population density

V: vehicle distribution
T: average travel time
F: average traffic flow

have been widely implemented in Python among the scien-
tific community. The list of the prominent python libraries
and tools used in this master thesis is as follows:

1. Computation: Numpy

2. Data handling and manipulation: Pandas

3. Visualization and plotting: Matplotlib, Seaborn

4. Machine learning: PyTorch

The hardware used for the study is a 2020 Lenovo Flex
5 with i7 processor and 16 GB RAM as well as a Desktop PC

with almost the same specifications.

5. Experiment Results

In this chapter, the main findings of this master thesis are
presented. First, we investigate the learning process of the
implemented models by analyzing the convergence of loss
functions for each model and in each dataset. Second, we
evaluate the performance of the proposed models and com-
pare them with regression and MLP models. Third, the find-
ings of the analysis of the parameters under different hyper-
parameters settings for GCN and GAT models are presented.
Finally, we analyze the transferability of each model, which
are trained with the 10% and 20% demands and optimal sup-
plies.

For simplicity, in the first and third sections, we only de-
pict the plots for two datasets namely: (i) dataset 1, which
include the 10% ride-hailing demand and the optimal num-
ber of vehicles (1000 vehicles) scenario, and (ii) dataset 2,
which is the data under 20% ride-hailing demand and 2000
vehicles.
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Table 4: Node features and waiting time values for a 10% demand scenario and 1000 ride-hailing vehicles

Node D Cl L C S P V T F W*
60 0.00045 22629.94 461.88 600.00 12.50 1.00 0.00 36.95 0.00 457.19
61 0.00045 7881.36 345.20 60.00 14.00 23.00 0.00 24.66 0.00 457.19
62 0.00089 12573.67 336.13 60.00 14.00 190.00 0.00 24.01 0.00 218.50
63 0.00134 13370.23 118.88 600.00 8.33 118.00 0.00 14.33 9.37 532.05
64 0.00067 11899.66 160.14 1800.00 15.28 80.00 1.00 11.27 1011.45 106.50
65 0.00134 13336.25 174.37 600.00 8.33 32.00 0.00 21.04 10.45 568.00
66 0.00134 13520.31 61.03 600.00 8.33 166.00 0.00 7.32 2.46 453.50
67 0.00134 12053.81 226.48 600.00 9.72 10.00 0.00 25.47 56.97 207.80
68 0.00134 12457.21 152.56 600.00 8.33 453.00 0.00 18.39 3.41 150.80
69 0.00089 11985.13 64.71 1800.00 17.36 23.00 1.00 4.00 1023.85 239.90
70 0.00134 11981.92 35.75 1400.00 15.74 23.00 1.00 2.67 717.53 239.90

W ∗: average waiting time

Table 5: Normalized node-features for a 10% demand scenario and 1000 ride-hailing vehicles

Node D Cl L C S P V T F
60 1.88E-08 0.9531 0.0195 0.0253 0.00053 4.21E-05 0.00000 0.001556 0.00000
61 5.35E-08 0.9441 0.0414 0.0072 0.00168 2.76E-03 0.00000 0.002954 0.00000
62 6.77E-08 0.9527 0.0255 0.0045 0.00106 1.44E-02 0.00000 0.001819 0.00000
63 9.41E-08 0.9390 0.0083 0.0421 0.00059 8.29E-03 0.00000 0.001007 0.00066
64 4.47E-08 0.7944 0.0107 0.1202 0.00102 5.34E-03 0.00007 0.000752 0.06753
65 9.45E-08 0.9403 0.0123 0.0423 0.00059 2.26E-03 0.00000 0.001483 0.00074
66 9.33E-08 0.9412 0.0042 0.0418 0.00058 1.16E-02 0.00000 0.000510 0.00017
67 1.03E-07 0.9285 0.0174 0.0462 0.00075 7.70E-04 0.00000 0.001962 0.00439
68 9.79E-08 0.9098 0.0111 0.0438 0.00061 3.31E-02 0.00000 0.001343 0.00025
69 5.99E-08 0.8033 0.0043 0.1207 0.00116 1.54E-03 0.00007 0.000268 0.06863
70 9.45E-08 0.8451 0.0025 0.0987 0.00111 1.62E-03 0.00007 0.000188 0.05061

5.1. Convergence Analysis
The initial results of this study reveal that in each model,

the loss function (MAPE) successfully converges and learns
the learnable weights. However, the speed of converges and
the value of the loss function after 300 epochs varies depend-
ing on the model. For the GCN model, the loss function in
training phase reduces from 1 to 0.35 after 300 epochs under
dataset 1, and from 1 to 0.40 in dataset 2. For both scenar-
ios, the loss function begins converging after 70 epochs in
training phase as shown in Figure 23 (a) left , where in val-
idation phase, the loss function converges already after 60
epochs (see Figure 23 (a) right). In comparison to training
phase, where the fluctuation in loss function still exists after
70 epochs, in validation phase, loss function does not fluc-
tuate after 60 epochs. This determines how fast the model
learns the parameters.

Similarly, for GAT model, the loss function decreases from
4 to 0.37 during training phase in dataset 1, and from 5 to
0.39 when implementing dataset 2. In comparison to GCN
model, GAT model learns to converge later and after around
150 epochs (see Figure 23 (b) left). The same could be seen
for validation, the loss function converges after 150 epochs as
depicted in Figure 23 (b) right. In addition, the loss function
fluctuates higher than in GCN model. Although, GCN model

is simple to implement, but able to learn faster and achieve
higher performance.

On the other hand, for the regression model, the loss
function starts from 18 and converges to 0.44 in dataset 1,
and from 24 to 0.45 in dataset 2. For visualization reason,
the loss values after epoch 25 is displayed in Figure 24. The
model converges after 130 epochs in the training phase, and
125 epochs in the validation phase as depicted in Figure 24
(a).

Furthermore, the loss function reduces from 1 to 0.38 in
dataset 1, and from 1 to 0.40 in dataset 2 when implement-
ing the MLP model as displayed in Figure 24 (b). The loss
function converges after 100 epochs in the training and val-
idation phases. In comparison, to the regression model, the
loss function fluctuates higher in MLP model.

5.2. Model Evaluation
Comparing the performance of GCN and GAT models con-

sidering regression and MLP models as baselines, we can find
that regression model has a weaker performance than deep
learning models. The reason might be the due to the linear-
ity of regression model as well as the limited capabilities of
regression model in capturing the complex structure of graph
data. On the other hand, GCN and GAT model show better
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Figure 22: Waiting time data variation with 10 % demand on the left , and 20 % demand on the right under three different supply
scenarios.

performance in all datasets. First, the findings of the models
performance for 10% demand and three different supply sce-
narios depict that GCN model outperforms regression model
as an average of 21.5%, 17.5% and 11.4% in MAPE, MAE,
and RMSE respectively as depicted in Table 6. The compari-
son of GCN and MLP models reveal that GCN has better per-

formance approximately 3% in MAE and 2% in RMSE, how-
ever, MAPE does not change.

Regarding the GAT model, it outperforms regression
model about 21.5%, 17.5% and 11.5% in three evaluation
matrices respectively. Similar to GCN, GAT shows around
2.7% and 2.3% better performance than MLP in MAE and
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Figure 23: Training and validation losses for (a) GCN model, and (b) GAT model under 10% and 20% demand scenarios

RMSE, where no improvement has achieved for MAPE. In ad-
dition, the comparison of GCN and GAT models performance,
it is found that both have almost the same performance (see
Table 6).

Furthermore, the findings for the 20% demand scale and
three supply scenarios reveal that the GCN model outper-
forms the regression model by an average of 15.4%, 16.4%,
and 10.2% in MAPE, MAE, and RMSE respectively. However,
when compared with MLP, GCN show around 1% in MAPE,
5.5% in MAE, and 5.3% in RMSE better performance. Mean-
while, the GAT model outperforms the regression model by
an average of 13.8%, 13.4%, and 10.2% in MAPE, MAE, and
RMSE respectively. However, when comparing with MLP, GAT
shows 2.3% in MAE, and 2.5% in RMSE higher performance,
whereas MAPE depicts a slightly higher loss value as shown
in Table 7.

Furthermore, the analysis of the evaluation matrices re-
veals that by increasing the supply in terms of the number
of vehicles, the overall models’ performance improves. This
also applies considering both demand scales. As depicted in
Tables 6, and 7, all models have the best performance in the
dataset with 20% demand and 2500 vehicles supply. On the
hand, increasing the number of vehicles in the network re-

sults in decreasing the average waiting time of the network as
well as the spread of the data in terms of standard deviation
as displayed in Table 8. Hence, a less dispersion in the dataset
(e.g., waiting time values) might best match with real-world
data, and could be better linked with spatio-operational fea-
tures of the graph.

5.3. Sensitivity Analysis
To investigate the effectiveness of different parameters in

the performance of a model (e.g., GCN, GAT models), we
conducted several experiments under various parameters set-
tings. For GCN model, we choose number of GCN-layer, and
the number of hidden units. On the other hand, number of
attention heads and number of hidden units are selected for
sensitivity analysis of GAT model performance.

First, fixing the number of hidden units (n = 64) , we
run GCN model by changing the number of layers from 1 to
8. The findings reveal that the change in number of layers
in GCN model does not have huge impact in performance
of the model in all evaluation matrices. Still, with three-
layers, GCN shows better performance when considering the
datasets, and matrices as depicted in Figure 25.

Second, we fix the number of GCN-layer (K = 3), and
change the number of hidden units to [4,8,16,32,64,128].
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Figure 24: Training and validation losses for (a) regression model, and (b) MLP model under 10% and 20% demand scenarios

Table 6: Performance of the proposed models in comparison to baseline models for estimation of waiting time under 10% ride-hailing
demand and supply scenarios.

Scenario - 20% optimal supply optimal supply + 20 optimal supply
Method MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE
Regression 0.42 182.77 239.07 0.44 170.11 223.27 0.44 183.32 244.80
MLP 0.32 150.94 209.88 0.35 148.08 208.09 0.35 155.75 221.40
GCN 0.32 146.95 204.10 0.35 144.56 206.43 0.35 150.83 215.04
GAT 0.32 146.60 204.54 0.35 144.40 203.35 0.35 151.60 216.66
Improvement (%)
GCN ∗ 23.8 19.6 14.6 20.5 15.0 7.5 20.5 17.7 12.2
GCN ∗∗ 0.0 2.6 2.8 0.0 2.4 0.8 0.0 3.2 2.9
GAT ∗ 23.8 19.8 14.4 20.5 15.1 8.9 20.5 17.3 11.5
GAT ∗∗ 0.0 2.9 2.5 0.0 2.5 2.3 0.0 2.7 2.1

(*, **) Comparison with regression and MLP models respectively.

As shown in Figure 26, by increasing the number of hid-
den units, the model performance improves in all scenarios.
However, the slope of the change in GCN model performance
is different with regards to the change in the number of hid-
den units. For instance, the change in number of hidden units
from 8 to 16 has higher impact on the model performance
than the change from 32 to 64 units. Meanwhile, the train-

ing time increase with higher number of hidden units. Hence,
we found out that a 64 number of hidden units is a an optimal
choice for GCN model evaluation.

As displayed in figures 25, and 26, the change in the num-
ber of units has more impact on the model performance in all
matrices in comparison to the change in the number of GCN
layers.
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Table 7: Performance of the proposed models in comparison to baseline model for estimation of waiting time under 20% ride-hailing
demand and supply scenarios.

Scenario - 20% optimal supply optimal supply + 20 optimal supply
Method MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE
Regression 0.42 184.30 238.80 0.47 155.28 206.70 0.40 119.11 160.17
MLP 0.37 154.17 213.83 0.39 138.58 194.10 0.34 110.78 162.04
GCN 0.39 153.40 211.41 0.38 125.79 177.76 0.32 103.13 151.88
GAT 0.38 151.13 208.20 0.39 135.33 189.14 0.34 108.00 157.91
Improvement (%)
GCN ∗ 7.1 16.8 11.5 19.1 19.0 14.0 20.0 13.4 5.2
GCN ∗∗ -5.4 0.5 1.1 2.6 9.2 8.4 5.9 6.9 6.3
GAT ∗ 9.5 18.0 12.8 17.0 12.8 8.4 15.0 19.3 1.4
GAT ∗∗ -2.7 2.0 2.6 0.0 2.3 2.4 0.0 2.5 2.5

(*, **) Comparison with regression and MLP models respectively.
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Figure 25: Variation of the GCN model performance with different number of layers under the optimal supply scenarios (1000 and 2000
vehicles) for both demand scenarios (10% and 20%) respectively.
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Figure 26: Variation of the GCN model performance with different number of hidden units under the optimal supply scenarios (1000 and
2000 vehicles) for both demand scenarios (10% and 20%) respectively.

Regarding the GAT model, first, we fix the number of hid-
den units to (n=64) and change the number of attention
heads from 1 to 6. The findings show that does not change
significantly, however, MAE and RMSE reduce considerably
when the number of attention heads is set to 2 in all scenar-
ios. Meanwhile, increasing the number of attention heads
results in higher MAE and RMSE as depicted in Figure 27.

Meanwhile, the change in the number of hidden units
[4,8,16,32,64,128] while keeping the number attention
heads to (K =2), depicts that a higher number of hidden

units results in poor performance in evaluation matrices and
in both datasets. Similarly, a higher number of hidden units
increases the training time, and thus selection of hidden units
to 64 might be an optimal choice considering all evaluation
matrices.

5.4. Model Transferability Analysis
The model performances on prediction data are shown

in Table 9 and 10. Depending on the data used for training
the models, different findings are extracted. For instance,
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Figure 27: Variation of the GAT model performance with different number of attention heads under the optimal supply scenarios (1000
and 2000 vehicles) for both demand scenarios (10% and 20%) respectively.
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Figure 28: Variation of the GAT model performance with different number of hidden units under the optimal supply scenarios (1000 and
2000 vehicles) for both demand scenarios (10% and 20%) respectively.

Table 8: The description of mean and standard deviation of
waiting time in each dataset.

Dataset Mean St.dev
750 456 194
1000 408 187
1250 428 198
1500 407 181
2000 334 160
2500 292 139

when the models are trained with the dataset 1, their per-
formances on prediction data show improvements in most
of evaluation matrices. As shown in Table 9, all models de-
pict better performance in MAE and RMSE, where in MAPE,
they show higher values. On the other hand, when the mod-
els are trained with the dataset 2, their performances in the
prediction dataset deteriorate in all evaluation matrices as
displayed in Table 10.

6. Conclusion

This chapter presents a conclusion of the contents of the
whole thesis with the main findings as well as the future out-
looks derived from this study.

In this thesis, we aim to estimate the ride-hailing requests’
waiting time using the graph neural network (GNN) and con-
sidering the spatio-operational features of the transport net-
work. The study begins with a comprehensive literature re-
view, where we review the agent-based simulation models as
well as the basics of neural networks and GNNs. The objec-
tives are: (i) to choose a suitable simulation tool and settings
for modeling the ride-hailing model and extract waiting time
data, and (ii) to find which GNN-based approach(es) could
predict the ride-hailing waiting time considering the features
of the transport network data.

The methodology of this master thesis contains four main
parts namely: (i) data generation, (ii) the proposed frame-
work, (iii) the evaluation scheme, and (iv) model transfer-
ability. Multi-source data including the transport network,
and agents plan data for running simulations, and OSM data,
population density, and more are utilized for features’ extrac-
tion in this master thesis. The final nodes data including the
impacting features and the links information are prepared
for the GNN implementation. In light of the application of
different GNN-based approaches, GCN and GAT models are
utilized to predict the waiting time in a service area. Both
models take nodes’ information together with each node’s
features as well as the relation between the nodes (links data)
as inputs and predict the ride-hailing waiting time.

An experimental setup is developed to run MATSim-based
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Table 9: Transferability analysis of the trained models with dataset 1 [10% demand and optimal supply]

MAPE MAE RMSE
Model Eval Pred Change Eval Pred Change Eval Pred Change

Reg 0.44 0.52 (0.08) 170.11 146.14 23.97 223.27 199.37 23.90
MLP 0.35 0.47 (0.12) 148.08 126.05 22.03 208.09 181.75 26.34
GCN 0.35 0.50 (0.15) 144.56 125.63 18.93 206.43 175.32 31.11
GAT 0.35 0.49 (0.14) 144.40 126.89 17.51 203.35 180.27 23.08

Table 10: Transferability analysis of the trained models with dataset 2 [20% demand and optimal supply]

MAPE MAE RMSE
Model Eval Pred Change Eval Pred Change Eval Pred Change

Reg 0.47 0.46 0.01 155.28 155.33 (0.05) 206.70 214.86 (8.16)
MLP 0.39 0.42 (0.03) 138.58 140.61 (2.03) 194.10 204.94 (10.84)
GCN 0.38 0.42 (0.04) 125.79 134.34 (8.55) 177.76 194.10 (16.34)
GAT 0.39 0.42 (0.03) 135.33 134.60 0.73 189.14 197.69 (8.55)

simulation runs under various demand and supply scenarios
for the Cottbus city network. The extracted trips information
together with other related features are concatenated and a
total of 6 datasets are generated for the final implementation.
In addition, regression and MLP models are selected as base-
lines for comparing the performance of the utilized models.
We select MAPE, MAE, and RMSE matrices for the evaluation
of each model.

The findings of the experiment test reveal that deep
learning-based approaches have better performance than
the regression model. For instance, GCN outperforms the re-
gression model as an average of 15% in all datasets and eval-
uation matrices, whereas in comparison to MLP, GCN shows
3% better performance. Similarly, the GAT model depicts
14%, and 1.5% better performance than regression and MLP
models respectively. In addition, it is found that all models
have their best performance in the dataset with 20% demand
scale and 2500 vehicles in terms of supply. Meanwhile, to
test the effectiveness of the models’ hyperparameters in re-
gard to the performance of each model, a sensitivity analysis
is carried out. The results depict that in the GCN model, the
change in the number of GCN layers does not have a huge
effect on the performance of the model, however changing
the number of hidden units from low to high results in better
performance of the model. On the other hand, the change in
the number of attention heads in the GAT model does have a
significant impact, however, by increasing the number of hid-
den units, the model performance deteriorates. Finally, the
model transferability analysis shows that the models trained
with the dataset 1 depict better performance in prediction
dataset in comparison to models trained with the dataset 2.

The contribution of this master thesis successfully achieved
the main goal of this study. We implemented several deep
learning methods including regression model, MLP, GCN and
GAT to estimate waiting time. Although GNN-based models
are powerful in extracting graph data, their performance
could be well-differentiated from other models (regression
and MLP) with more complex data including several fea-

tures. Meanwhile, there are some limitations in this master
thesis and therefore it raises several new lines of work that
could be pursued as valuable research topics in the future.

First, in this master thesis we used the waiting time data
extracted from a simulation platform, however, utilization of
real-world data for extraction of the graph features and fur-
ther implementation of such data in the GCN and GAT models
might have different outcomes. Second, in our data gener-
ation process, apart from waiting time information, and the
traffic-related features, we also utilized population density
as an extra feature that might have a direct impact on the
ride-hailing waiting time. However, additional features such
as land-use type, build-environmental characteristics (e.g.,
points of interest), public transport stops, and more impact-
ing factors on waiting time could be considered. Thus, a
study with more rich features might bring new insights into
the waiting time prediction models. Third, our data is lim-
ited to spatio-operational features of the network. Each ride-
hailing trip is requested in a specific location within a day.
However, to include the impacts of traffic flow and conges-
tion level, the temporal variation of the requests could be
considered. For instance, a request waiting time in different
time intervals should be added to the graph features. Us-
ing this data, which includes both the spatial and temporal
variation of the request points, the STGNN model could be
implemented to estimate the waiting time. Hence, a study
could be conducted to extract such data from a microscopic
simulation platform (e.g., Vissim, SUMO) and implement it
in STGNN. Fourth, we used the features of the links to allo-
cate node features. However, it is also possible to utilize a
dual graph approach and directly conduct the prediction on
links. Therefore, a study to transform a graph to its dual, and
further do the prediction might have valuable outputs.
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