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Numerical Studies for the Scheduling of Continuous Annealing Lines

Hagen Alexander Hönerloh

Leibniz University Hannover

Abstract

The continuous annealing of flat steel improves its properties for applications such as automotive manufacturing. Scheduling
these processes on Parallel Heterogeneous Annealing Lines (PHALs) is complex due to diverse coil properties, incompatible
process modes, and due date constraints. Introducing stringers to address incompatibilities between steel sheets raises costs,
energy use, and CO2 emissions, highlighting the need for optimized scheduling. This thesis implements a mathematical model
in Python using the Gurobi solver to optimize PHAL scheduling by minimizing stringer usage while meeting tardiness con-
straints. The model is extended to include coil-specific release dates and expanded to address trade-offs between stringer use,
tardiness, and due date deviations, including earliness. A computational study evaluates the model under various scenarios,
examining the effects of coil heterogeneity, urgency, process flexibility, and stringer processing times. Results show that op-
timized schedules reduce stringer use and delays, particularly under high process flexibility. These findings demonstrate the
potential of optimization to improve efficiency and sustainability in steel production while guiding future research in dynamic
scheduling approaches.

Keywords: continuous annealing lines; Gurobi solver; scheduling optimization; steel industry; stringer minimization

1. Introduction

1.1. Subject and motivation
Our modern economy thrives on digital transformation

and its many facets. One key aspect is the computerization of
processes using advanced digital technologies. Through com-
puterization, companies can create and implement optimal
schedules for their processes and thereby increase efficiency
and productivity, as companies always sought to improve
their decision-making through new scheduling and planning
methods.1 But the potential impact of computerization and
digitalization could be far greater than anything before.

The steel industry is one of the many industries that stand
to benefit significantly from this development. By leverag-
ing digital technologies, manufacturers are able to minimize
production time, while also maximizing the use of resources
and thus their profits.2 The impact on this highly compet-
itive industry, which supplies us with materials needed for

1 Tang and Meng, 2021, p. 1
2 Iannino et al., 2021, p. 620

everyday appliances, railways, or even buildings, is aston-
ishing.3 One process in the steel industry, that can benefit
greatly from digitalization, is the continuous annealing of
flat steel, a method of processing steel to change its physi-
cal and mechanical properties.4 In this process, coils of cold
rolled flat steel are processed in furnaces with different an-
nealing temperatures and transport speeds that make up the
process mode of an individual coil. Different process modes
lead to different mechanical and physical properties of the
steel.4 Hence, the mode is chosen according to the desired
characteristics. Cold rolled flat steel is essential for building
cars, and household appliances and has many more areas of
application.5 Scheduling the continuous annealing process
on continuous annealing lines (CALs) is a difficult task due
to the different properties of the flat steel, processing modes,
and other aspects like due dates. If the properties or pro-
cessing modes of two successive coils are too different, scrap

3 Zhao and Yang, 2016, p. 3417 and Terence, 2020
4 Sarna, 2013
5 Commodity-Inside, 2019
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coils, so-called stringers, must be added between the coils
to bridge these differences, resulting in additional material
costs and a loss of efficiency.6

The impact of this loss of efficiency cannot be overstated.
Not only does the manufacturer lose valuable production
time, but he also has to waste energy, increasing the amount
of CO2 emitted per kg of steel. With a share of seven % of the
world’s annual CO2 emissions, the steel industry is already
one of the most energy-intensive industries worldwide.7 In
the meanwhile, in the European Union, the steel sector is fac-
ing an ever-increasing cost of energy, as well as an increase
in CO2 price per ton of CO2 emitted, which some experts
predict could reach 50% by the end of the decade.8

Hence, manufacturers should have a serious interest in
optimizing their production schedules by minimizing the in-
troduction of stringers and thus the costs caused by material
and energy wastage, loss of efficiency, and CO2 emissions,
which can be achieved through the use of digital technolo-
gies.

1.2. Research question and structure of the work
This thesis is based on a paper by Wegel et al. (2024),

in which they propose a mathematical model to optimize the
scheduling of the continuous annealing process. The objec-
tive of this model is to minimize the introduction of stringers
in a schedule, while also considering a tardiness constraint
that limits the number of delays. It is designed for short-
term planning and can therefore be used at the operational
level of operations management.9 So far, this model has only
been implemented in the Julia programming language and
used with a proprietary algorithm. Thus, the model has not
yet been implemented in the popular Python programming
language. This implementation forms the basis of this thesis.

During the course of this work, a numerical study will
be conducted on this model and on its expansions created
during the work. It will consist of different sections, which
study the impact of certain parameters and scenarios on the
scheduling of CALs. The results will be thoroughly analyzed
and discussed to derive emerging trends and formulate man-
agerial insights.

First, the CALs for flat steel will be explained in terms of
their design and their scheduling, which will be followed by
the current state of research. Afterwards, an explanation of
the underlying problem and the mathematical model itself
will be given. This will be continued by further extensions
of the model with the aim of mimicking the real-world pro-
cess. The numerical studies conducted will be the core of this
thesis. Different trends that occur with increasing instance
sizes will be explored first, followed by sections in which the
impact of scenarios and the alteration of certain parameters
on the scheduling process will be investigated. Furthermore,

6 Besson, 1998, p. 29
7 Joint-Research-Centre, 2022
8 Twidale et al., 2021 and Krukowska, 2021
9 Karakostas et al., 2020, p. 2 and Karakostas et al., 2019, p. 2

the base model will be compared with the extended model
regarding its performance and solutions. The results of the
computational study carried out on the Python implemen-
tation and the instances used are presented and discussed,
leading to a summary of the work and an outlook for future
research, further extensions, and managerial insights.

2. Continuous Annealing Lines for Flat Steel

2.1. Process description
The industrial continuous annealing process is made pos-

sible by CALs, which consist of several sections. One such
CAL is depicted in figure 1. CALs are not standalone, they are
part of a greater complex consisting of different areas dedi-
cated to different processing methods, like the cold rolling
and galvanization of steel.10 This study will focus on the an-
nealing of cold rolled steel, which is usually the bottleneck
of steel processing.11 In some cases, it may also be possible
and advantageous to anneal hot rolled steel.12 In compar-
ison to hot rolling, cold rolling happens at far lower tem-
peratures. But these processes are complementary and not
substitutional, since the hot rolling process is an upstream
process of cold rolling. While hot rolling rolls the steel to
the desired width, cold rolling reduces its thickness by up to
90 %, increasing its strength and hardness but also severely
diminishing its ductility and increasing its brittleness.13 To
improve these mechanical and physical properties, the steel
strips are annealed in CALs. Through recrystallization of mi-
crostructures and other processes, the steel regains some of
its lost characteristics, especially its ductility.14

The process starts at the entry section with the coils of
cold rolled flat steel and the so-called pay-off reel, as de-
picted in figure 1. These coils stem from the upstream cold
rolling process. The pay-off reels fixate the coils of flat steel
with a mandrel and rotate to continuously unwind them.16

Further downstream, a welding machine automatically welds
the tail end to the head end of two consecutive coils together,
thus providing continuous strip feeding to the succeeding
sections.17 The welding process itself is of the utmost im-
portance since a weld break could result in a complete line
shutdown.18 Therefore, compatibility between consecutive
coils regarding their thickness and width has to be ensured.
If the two consecutive coils are incompatible with each other,
a stringer has to be added between them to assure a contin-
uous annealing process, resulting in a loss of efficiency and
higher material and energy costs.19 Stringers can be reused,
but only for a limited number of times.20

10 Zhao and Yang, 2016, p. 3418
11 Li et al., 2023, p. 1
12 Steel-Warehouse, n.d.
13 Zhao and Yang, 2016, p. 1
14 Sarna, 2013
15 Takurou et al. (2016), p. 113
16 Jiyuan-Shenzhou-Industry, n.d.
17 United-Enterprises, n.d.
18 Williamson, n.d., p. 3
19 Besson, 1998, p. 29
20 Mujawar et al., 2004, p. 1
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Figure 1: A Continuous Annealing Line as implemented in a Japanese factory.15

After degreasing by a degreasing unit, the steel strip en-
ters the process section, where it first feeds into an entry
looper.21 This looper counteracts interruptions in the con-
tinuous annealing process, such as the welding process, and
maintains a continuous strip speed throughout the annealing
process. It achieves this by moving its rolls apart from each
other, thus increasing the length of strip steel it can hold and
the distance the steel has to traverse. The continuous strip
then enters several furnaces, that can reach temperatures of
up to 850 °C, while maintaining a strip speed of up to 800
m/min.22 The steel strip cycles through the furnaces for sev-
eral minutes, depending on the chosen processing mode. As
previously described, a processing mode is a combination of
annealing temperature and strip speed, which leads to cer-
tain steel properties.23 Since the strip speed and furnace
temperature can only be adjusted in a certain range from the
preceding coil to the succeeding one, compatibility between
their processing modes is necessary or else a stringer has to
be introduced between them.24 It should also be mentioned,
that adjusting the furnace temperature costs a lot of energy
and should therefore be minimized.25

After the heat treatment, the steel strip is cooled down in
several steps, until it feeds into the delivery or exit looper.26

This looper works like the entry looper and can therefore
compensate for interruptions like maintenance and the cut-
ting process, which follows downstream.24 After the cutting,
the tension reel recoils the steel strip into the previous coils.27

Compared to the batch annealing process, in which the steel
is processed as a coil, the continuous annealing process has
a higher efficiency and productivity, while also delivering a
more uniform product, regarding the physical and mechan-
ical properties of the strip steel. Some of its disadvantages,
however, are the large amounts of space and capital needed
to construct it.23

21 United-Enterprises, n.d.
22 United-Enterprises, n.d.
23 Sarna, 2013
24 Besson, 1998, p. 29
25 Zhao and Yang, 2016, p. 3417
26 Sarna, 2013
27 Jiyuan-Shenzhou-Industry, n.d.

2.2. Differentiation from literature
The topic of scheduling has been a research subject since

the early 20th century and is nowadays one of the most re-
searched fields in operations research, with several hundred
papers published each year.28 Scheduling in the steel indus-
try particularly is one of the most difficult and complex prob-
lems, due to the complexity of the steel industry itself and
therefore, there have been many attempts to optimize certain
aspects of it.29 This section will feature different approaches
concerning CALs and continuous galvanizing lines, a process
further downstream of the annealing process that has many
similarities with CALs regarding its scheduling.30

Li et al. (2023) aimed to minimize earliness and tar-
diness costs, as well as setup costs, which occur through
changes in annealing temperature, on one processing line.31

The authors noted, that these objectives conflict with each
other since minimizing the setup costs by constructing large
batches of similar coils could increase the earliness and tardi-
ness costs and vice versa. Stringers were not directly consid-
ered. To minimize the three objectives, they used an adaptive
multi-objective differential evolutionary algorithm (MODE)
based on deep reinforcement learning (DRL). Several other
papers also include the use of MODEs for the optimization of
CALs and for other processes as well, like for the hot rolling
process.32 The usage of MODEs can be highly effective, as
can be seen in a study by Dong et al. (2021), in which they
were able to find optimal schedules for the color-coating
process for up to 400 coils with three different objectives.
During the color coating process, protective or decorative
coatings are applied to the steel.33

Zhao and Yang (2016) tested a discrete differential evolu-
tion algorithm (DDE), which uses discrete job permutations
to find optimal solutions, to average the line capacity and
minimize the changeover costs. These occur through anneal-
ing temperature changes in the furnace, and Zhao and Yang
(2016) concluded that their algorithm performed well for up
to 90 coils on parallel processing lines.34 Even though the dif-

28 Potts and Strusevich, 2009, p. 1
29 Harjunkoski and Grossmann, 2001, p. 1649
30 Zhao and Yang, 2016, p. 3418
31 Li et al., 2023, p. 1-2
32 Tang and Wang, 2010, p. 104-116 and Pan et al., 2019, p. 327-348
33 Sarna, 2014
34 Tasgetiren et al., 2007, p. 271-273
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ferences between annealing temperatures of adjacent coils
were considered, stringers and tardiness were not. Since
DDEs are difficult to apply to real-life problems, the algo-
rithms’ usefulness may be in question.35

Evolutionary algorithms also tend to focus on local op-
tima, which can be less optimal than a global optimum.36

The so-called Tabu search solves this problem and was used
for optimization in continuous galvanizing lines.37 Gao et al.
(2008) claimed their respective approaches to be very effec-
tive as they were able to solve instances with up to 100 coils
in only some seconds. But it has to be noted that some as-
pects like tardiness were not considered. A study by Pan et
al. (2017) aimed to minimize the total weighted completion
times on a parallel CAL with up to 18 different lines and 120
coils and achieved optimal solutions in under ten minutes.38

One similarity of the previously discussed studies is the
deterministic characteristic of the used models. Therefore,
some authors used dynamic approaches like a multi-agent
system (MAS) to optimize dynamic scheduling problems,
which consider randomness.39 A MAS uses artificial intelli-
gence and multiple agents or perspectives to solve a problem
to provide flexible solutions.40 Iannino et al. (2021) used
both deterministic and dynamic models for scheduling. The
authors used three different approaches to optimize a day’s
schedule with around 2100 coils in several iterations, with
the objective to improve scheduling flexibility. For short-term
planning with unstable circumstances, they used a MAS. The
second approach was a deterministic, mixed integer linear
program (MILP), as is used in this study. The third and last
approach utilized a continuous flow model (CFM) for long-
term scheduling, which uses a simplified model to schedule
the manufacturing process over various time periods.41 Ian-
nino et al. (2021) summarized that all three approaches have
their advantages and disadvantages and that they should be
used complementarily rather than substitutionally to utilize
each advantage in the right circumstances.

The second most important study about scheduling for
this thesis is by Mujawar et al. (2012). The authors proposed
a MILP for the minimization of both stringers and tardiness
in terms of total time overdue per coil. Due to technical lim-
itations, they were only able to solve the model with up to
15 coils, with a solving time of close to three hours. Because
of these limitations, they leveraged two different heuristics,
which were able to yield feasible solutions for up to 150 coils,
but could only minimize the number of stringers introduced
in the schedule and disregarded the tardiness.42

Nonetheless, the proposed mathematical model mim-
icked the real-world process to a higher degree than others.
Because of this, Wegel et al. (2024) decided to base their

35 Zhao and Yang, 2016, p. 3418
36 Mirjalili and Gandomi, 2023, p. 393
37 Gao et al., 2008, p. 1829-1833
38 Zhang and Yang, 2014, p. 800-802
39 Cowling et al., 2004, p. 178-188 and Ouelhadj et al., 2004, p. 161-172
40 Balaji and Srinivasan, 2010, p. 1-2
41 Iannino et al., 2021, p. 620-630
42 Mujawar et al., 2012, p. 440-444

study on the model proposed by Mujawar et al. (2012) and
develop it further for better performance in the solving pro-
cess.

3. Optimization model for Parallel Heterogeneous An-
nealing Line Scheduling

3.1. Problem description
As mentioned in section 2.1, the continuous annealing

process is very complex, and many parameters have to be
accounted for. One such parameter, that was briefly men-
tioned before, is the individual due date of each coil. These
are necessary, to schedule the further downstream produc-
tion stages, like the galvanization.43 These schedules only
have limited flexibility and to not put them at risk, the max-
imum number of delays has to be bound. This limitation is
implemented through a service level, which value is relative
to the number of coils processed. Thus, a greater instance is
granted with a higher service level than a small or medium
one.

Until now, only the specific characteristics of the coils and
their processing modes have been considered. But the lines
they are processed on have different characteristics them-
selves. Some lines may only be able to process coils with
certain thicknesses and widths, while others may be able to
process all coils, regardless of their characteristics. When cre-
ating a schedule for a continuous annealing line, the manu-
facturer thus also has to consider which coil can be processed
on which of the parallel heterogeneous lines, therefore de-
creasing the amount of planning flexibility.

This results in a schedule that has to consider the differ-
ent characteristics of the coils, their desired specifications in
terms of strip speed and annealing temperature, the compat-
ibility of said characteristics and processing modes of con-
secutive coils, as well as their compatibility with each pro-
cessing line and their due dates, while it also has to comply
with the service level and aims to minimize the number of
used stringers. To be able to create such a complex sched-
ule, Wegel et al. (2024) set four assumptions, regarding the
release dates, internal service level, costs, and operating con-
ditions.

To reduce complexity, it is first assumed that every coil
is available and waiting for processing at the beginning of
the schedule. Therefore, each coil could be the first to be
processed in the schedule since they have no release dates.

The second assumption concerns the previously described
internal service level. As already mentioned, the service level
bounds the absolute number of delayed coils to a certain
value that is relative to the instance size. But the internal
service level also bounds the maximum delay that can occur
in the schedule, since all coils have to be processed during
it. This maximum delay depends on the maximum amount
of time needed to process all coils in one schedule.

43 Zhao and Yang, 2016, p. 3418
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Table 1: Notation of the mathematical model.

Symbol Meaning

Indices and index quantities

i, j ∈ 1, ...,N Coils

k ∈ 1, ...,K Processing lines

m ∈ 1, ...,Mik Feasible processing modes of coil i on line k

n ∈ 1, ...,M jk Feasible processing modes of coil j on line k

Parameters

di Due date of coil i

pikm Processing time of coil i on line k in mode m

α Service level

M Maximum duration of the schedule

ci jkmn Costs of adding a stringer between coils i in mode m and j in mode n on line k

t i jkmn Additional processing time of a stringer between coils i in mode m and j in mode n on line k

Decision variables

yi jkmn ∈ {0,1} Binary variable with value 1, if coils i in mode m and j in mode n are processed in sequence on
line k, else 0

δi jk ∈ {0,1} Binary variable with value 1, if coils i and coil j are processed in sequence on line k, else 0

x ikm ∈ {0,1} Binary variable with value 1, if coil i is processed in mode m on line k, else 0

si ≥ 0 Start date of coil i

zi ∈ {0,1} Binary variable with value 1, if coil i is delayed, else 0

The third assumption made sets the costs of all coils to a
fixed value. The reasoning behind this is that only the costs
caused by the introduction of stringers should be considered
since we cannot avoid the costs caused by the processing of
coils. Due to CALs being quite stable and completely auto-
mated, Wegel et al. (2024) also assume that no randomness
occurs during the process and therefore propose a determin-
istic model, in which all parameters are known a priori. This
is the fourth and last assumption regarding the mathematical
model.

Based on these assumptions and the aspects mentioned
previously, the authors build a deterministic optimization
model that aims to create an optimal, cost minimizing, and
tardiness-bound schedule for parallel heterogeneous anneal-
ing lines, which is based on the model by Mujawar et al.
(2012)44 In the following sections, the notation of this math-
ematical model and the model itself will be explained, which
will be followed by further extensions to it.

3.2. Notation
This section presents the notation of the mathematical

model proposed by Wegel et al. (2024). The coils of flat steel
are denoted by N = {1, ..., N} and the parallel continuous
annealing lines they are processed on by K = {1, ..., K}. Ev-
ery coil i ∈ N has a specific due date di > 0. The maximum

44 Mujawar et al., 2012, p. 440

amount of acceptable delays, the service level, is denoted by
α ∈ N.

Each coil i also has a set amount of different processing
modesMik on each line k ∈ K . The feasible process mode
m of coil i on line k includes a specific annealing temperature
and strip speed. If coil i can be processed in a specific mode
on line k depends on the characteristics of the coil i and of the
line k, as well as on the parameters of the processing mode
itself. It is therefore possible, that no mode for the processing
of coil i on line k exists. If coil i can be processed on line k
in mode m, the processing time pikm can be derived.

Furthermore, coil i on line k could be succeeded by coil
j, with j ∈ N , in the feasible processing mode n, with n ∈
M jk. In this case, the compatibility of coil i in mode m and
coil j in mode n regarding their width, thickness, annealing
temperatures, and strip speeds has to be reviewed. If the
coils and modes are incompatible with each other, a stringer
has to be added between them. The additional costs caused
by introducing a stringer into the schedule between coil i in
mode m and coil j in mode n on line k are expressed by ci jkmn,
while the additional processing time is contained in t i jkmn.
If the coils and their respective modes are compatible, the
additional costs and processing time will equal zero, since
no stringer has to be introduced.

The processing schedule will be defined by the following
decision variables. Each coil’s start time is represented by
si ≥ 0, while its processing line and mode in the optimized
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schedule are indicated by the binary variable x ikm ∈ {0, 1}
taking the value of one if coil i is being processed on line
k in mode m or zero, if not. If the completion of coil i is
behind the scheduled due date di , the binary variable zi ∈
{0,1}will equal one or zero, if coil i’s processing was finished
in time. The sequence of the schedule is indicated by the
binary variable δi jk ∈ {0, 1}, with the value of one if coil i
precedes coil j on line k or zero if this is not the case.

Additional information regarding their respective modes
m and n is provided by the binary variable yi jkmn ∈ {0, 1}
with the value of one if coil i is being processed in mode m
and is succeeded by coil j in mode n on line k or zero, if not.

3.3. Mathematical model

min
z,s,x ,δ,y

Z =
∑

i∈N

∑

j∈N

∑

k∈K

∑

m∈Mik

∑

n∈M jk

ci jkmn · yi jkmn

s.t.

si +
∑

k∈K

∑

m∈Mik

pikm · x ikm ≤ di + zi ·M ∀i ∈ N , (1)

si +
∑

k∈K

∑

m∈Mik

∑

n∈M jk

(pikm + t i jkmn) · yi jkmn ≤

s j +M · (1−
∑

k∈K

δi jk) ∀i, j ∈ N , (2)

δi jk =
∑

m∈Mik

∑

n∈M jk

yi jkmn

∀i, j ∈ N ,∀k ∈K , (3)

∑

j∈N

∑

n∈M jk

yi jkmn ≤ x ikm

∀i ∈ N ,∀k ∈K ,∀m ∈Mik, (4)

∑

i∈N

∑

m∈Mik

yi jkmn ≤ x jkn

∀ j ∈ N ,∀k ∈K ,∀n ∈M jk, (5)

∑

k∈K

N +1
∑

j=1

δi jk = 1 ∀i ∈ N , (6)

∑

k∈K

N
∑

i=0

δi jk = 1 ∀ j ∈ N , (7)

N +1
∑

j=1

δ0 jk = 1 ∀k ∈K , (8)

N
∑

i=0

δi(N +1)k = 1 ∀k ∈K , (9)

N
∑

j=0

δ jik =
N +1
∑

j=1

δi jk ∀i ∈ N ,∀k ∈K , (10)

∑

i∈N

zi ≤ α, (11)

si ≥ 0 ∀i ∈ N , (12)

x ikm,δi jk, yi jkmn, zi ∈ {0, 1}
∀i, j ∈ N ,∀k ∈K ,∀m ∈Mik,∀n ∈M jk. (13)

The main objective of this mathematical model is the min-
imization of costs caused by the introduction of stringers.
Therefore, the objective function minimizes the sum of prod-
ucts of ci jkmn and yi jkmn. By multiplying ci jkmn and yi jkmn the
cost of a stringer is only regarded if coil i in mode m and coil
j in mode n on line k are not compatible with each other and
are processed in sequence in the optimized schedule, thus
requiring a stringer. If they are not processed in sequence
or if they are compatible with each other or both, the value
of the product will equal zero since yi jkmn or ci jkmn or both
will equal zero, respectively. By taking the sum over all coils,
lines and modes, all introduced stringers in the schedule are
considered.

To mimic the real-world process and maintain consis-
tency, several constraints are necessary and will be discussed
in the following. Constraints (1) and (2) assure time con-
sistency, while constraints (3)-(5) ensure the consistency of
decision variables that indicate the same information. The
consistency of the processing sequence in the schedule is es-
tablished by the constraints (6)-(10). These are followed by
three additional constraints, that regulate general aspects of
the mathematical model and the schedule.

The first constraint (1) takes the tardiness of the schedule
into account. The time of completion of coil i is calculated
by adding its processing time pikm in mode m on line k to
its start date si . This completion date has to be smaller or
equal to its due date di for the coil to be finished process-
ing in time. In this case, zi would equal zero due to the re-
striction of the number of delayed coils by the service level
and the possibility that the delay could be used somewhere
else in the schedule to further minimize the number of intro-
duced stringers. But if the completion date is after the due
date, zi has to equal one to not violate the equation, since the
time of completion of coil i will be greater than its due date
di . Additionally, the product of zi and M assures that coil i
has to be processed sometime in the schedule since M is de-
fined as maxk(
∑

i∈N ,Mik ̸=;
max j,m,n(pikm + t i jkmn)), which is

the maximum amount of time necessary to process all coils
in the schedule. This constraint has to be set for every coil,
as every coil has a due date and could be delayed.

Constraint (2) considers the time sequences of processing
in the schedule. The left side represents the earliest time a
succeeding coil j could be processed after the processing of
the preceding coil i was finished. This is achieved by adding
the processing time pikm of coil i in mode m on line k and
the possible additional processing time of a stringer t i jkmn, in
case of incompatibility of coil i in mode m and coil j in mode
n, to the start date of coil i. Processing of the succeeding
coil j can only start after the processing of coil i or that of
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the stringer is completed. Thus, s j has to be greater or equal
to that time of completion. In the case that coils i and j are
processed in sequence on line k, δi jk would equal one, and
thus, M would not be added to the right-hand side. But as
this constraint holds for all coils, it could compare two coils
with each other, that are not processed in sequence. To pre-
vent this comparison to have an effect on the solution, M is
added to s j , since in this case, δi jk will equal zero. Thus, the
right side will always be greater than or equal to the left side
since M ≤ s j+M and si+(pikm+ t i jkmn) · yi jkmn ≤ M in every
scenario, because of the nature of M described previously.

Constraint (3) assures consistency throughout the vari-
ables δi jk and yi jkmn. Both variables indicate the sequence
of coils i and j, as well as the line k they are processed on,
and therefore should be equal to each other with the same
coils i, j and line k. Since yi jkmn also indicates the processing
modes of both coils and cannot represent a binary value with-
out this information, the sum of yi jkmn over all modes has to
be taken for this constraint to be effective. This constraint
also reassures, that the coils are only processed in one mode
and not in multiple, hence in this case, two yi jkmn would
equal one with the same coils and line. Therefore, δi jk would
have to equal two, which is impossible due to the binary na-
ture of δi jk.

Constraint (4) contributes to the decision variable con-
sistency as well. Both variables yi jkmn and x ikm indicate the
processing line k and the processing mode m of coil i. Hence,
they should be equal to each other for every coil, mode, and
line. But in the case that coil i is the last coil that is being pro-
cessed on line k, yi jkmn would equal zero since yi jkmn does
not take the coils i ∈ {0,N +1} into account and could there-
fore not be succeeded by another coil j. To not violate this
restriction in this case, yi jkmn must only be less or equal to
x ikm. Therefore, with x ikm equalling one, yi jkmn could be ei-
ther one or zero. Furthermore, by taking the sum of yi jkmn
over all coils and modes, the constraint prevents coil i from
being succeeded by multiple different coils in multiple dif-
ferent modes and limiting this number to the value of x ikm,
which is either one or zero due to its binary nature.

Therefore, coil i can only be succeeded by a single coil j
in a single mode n on line k, if i is being processed on line
k in mode m or by none if it is not. This holds for all coils,
lines, and modes.

The following constraint (5) is essentially the same as (4)
but for the succeeding coil j. Hence, it prevents coil j from
succeeding multiple coils in multiple modes by limiting this
number to x jkn. It has to be noted, that the indices of x jkn
in this constraint differ from the indices of x ikm in the other
constraints since this constraint should only restrain the suc-
ceeding coil j. Additionally, yi jkmn must only be less or equal
to x jkn, since all yi jkmn’s would be zero if j would be the first
coil to be processed on line k, which would violate the con-
straint. This is because this constraint only accounts for coils
in N and thus the first coil on line k cannot be preceded.
This restriction applies to all succeeding coils on every line
in every processing mode.

Constraint (6) restricts the number of coils that succeed

coil i on any line to one. This prevents coil i from being
processed and preceded by several coils on different lines.
If this would be the case, the sum of δi jk over all lines and
coils in [1, N + 1] would be greater for coil i than one, thus
violating the restraint. If coil i is the last coil to be processed
on line k, it could not be succeeded by any coil, resulting in
δi jk equalling zero. Therefore, a virtual coil N + 1 has to be
introduced so that in the case mentioned above, coil i would
not violate this constraint. This restriction applies to every
coil.

Constraint (7) is similar to constraint (6), as this con-
straint restricts the number of preceding coils of coil j on
all lines to one and therefore prevents coil j from being pro-
cessed and preceded more than once during the schedule.
The extension of N by zero can be explained with the con-
straint (8). Here, i is set to the value zero. This virtual coil
zero marks the beginning of the schedule on every line k.
Since this coil is not being processed, it is not included in
most other constraints. But since coil zero is the first on ev-
ery line k, it has to be succeeded by one coil j ∈ [1,N + 1].
Therefore, constraint (8) ensures that one coil j is the first
one to be processed on line k. No real coils are processed on
line k during the schedule if coil N + 1 succeeds coil zero.
This holds for every line because every line has to have a vir-
tual first coil that is being succeeded by another coil, virtual
or real.

Constraint (9) on the other hand ensures that one coil
i ∈ {0,N } has to be the last real coil to be processed on line
k. To mark this coil as the last coil to be processed on line
k, it will be succeeded by another virtual coil N + 1. As on
every line k there has to be a last coil to be processed, this
holds for every line.

The last sequence consistency constraint, constraint (10),
assures that every real coil i has to have a predecessor and
successor coil j on the line k it is being processed on. But
it also accounts for the extreme case, that a processing line
k processes no real coil, which is why it considers coil zero
as a predecessor on the left-hand side and coil N + 1 as a
successor on the right-hand side. Additionally, this considers
that one real coil has to be the first and another has to be the
last coil if real coils are processed on the line, as described in
constraints (8) and (9). This restriction applies to every line.

Hence, the introduction of the virtual coils zero andN +1
prevents δi jk from equalling zero in the cases that coil j is the
first or coil i is the last coil to be processed on line k, which
would violate the sequence consistency constraints.

The eleventh constraint (11) restricts the maximum
amount of delayed coils to the service level α. As this applies
to the entire schedule, the sum of zi over all coils has to
be taken. Since processing only starts at the beginning of
the schedule, no start date si can take a value of less than
zero. This is ensured by constraint (12). As every coil needs
a start date, since every coil has to be processed at some
point during the schedule, this holds for every coil. The last
constraint (13) ensures that the binary variables x ikm, δi jk,
yi jkmn, and zi only equal the binary values of zero or one and
also indicates which index is the element of what parameter.
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3.4. Expansions of the model
3.4.1. Release dates

The first expansion tackles the assumption of no coil-
specific release dates made by Wegel et al. (2024), which was
explained in section 3.1. To mimic a more realistic process,
coil-specific release dates were added to the model with the
new parameter ri . This parameter holds the specific release
date of each coil i, with the release dates being distributed
with the same distribution as the urgency of the coils, but
with zero as the lower and a as the upper bound. Therefore,
in the case of Ver y high UC, the release dates are distributed
via the uniform distribution U(0, a). The UC and other fac-
tors will be explained in section 4.1 For the release dates to
be considered in the model, the following constraints had to
be added:

si ≥ ri ∀i ∈ N (14)

ri ≥ 0 ∀i ∈ N (15)

Constraint (14) restricts the start time of coil i, si , from
being earlier than its release date ri , while (15) prevents the
release date from being earlier than the start of the schedule.
These hold for all coils.

This is only a minor extension of the model. The two
major extensions will be described in the following sections.

3.4.2. Minimization of stringer use and tardiness
Since both tardiness and costs caused by stringer intro-

duction play a pivotal role in the scheduling of parallel het-
erogeneous annealing lines (PHALs), Wegel et al. (2024) pro-
posed an expansion of the mathematical model. This ex-
pansion modifies the objective function in such a way, that
the sum of introduced stringers and the absolute number of
delays are minimized, as depicted below. Because of this,
the service level α and constraint (11) from the mathemati-
cal model in section 3.3 are not necessary anymore and are
removed. To account for different weights of tardiness and
stringer costs, the two sub-objectives are multiplied with new
parameters. While r_st r sets the weight of the stringer costs,
r_tar does the same for the tardiness, expressed by the sum
of delayed coils, with r_st r + r_tar = 1. To achieve this, an
additional restriction (16) was introduced. This constraint
ensures that the total weight of tardiness and stringer costs
does not differ from 100%.

min
z,s,x ,δ,y

Z =
∑

i∈N

∑

j∈N

∑

k∈K

∑

m∈Mik

∑

n∈M jk

ci jkmn · yi jkmn · r_st r

+
∑

i∈N

zi · r_tar

r_st r + r_tar = 1 (16)

3.4.3. Minimization of stringer use and due date deviation
The second major extension of the model is an enhance-

ment of the first extension by not only taking tardiness into
account but also the earliness of the schedule. If products
are produced before the due date, they have to be stored in
warehouses, which leads to so-called inventory holding costs.
They are not only caused by the storage and handling of the
inventory, but also by insurance and other factors.45

Thus, there is also an incentive to minimize earliness in
production processes. To minimize both the use of stringers
and the deviation from the due date, the objective function
had to be altered accordingly.

min
z,s,x ,δ,y

Z =
∑

i∈N

∑

j∈N

∑

k∈K

∑

m∈Mik

∑

n∈M jk

ci jkmn · yi jkmn · r_st r

+
∑

i∈N

(vi · r_v + ei · r_e) · r_dd

The first part of the objective function is the same as in
the first major extension. But the second part introduces two
new variables and three new parameters. The two new con-
tinuous variables ei and vi can be explained by describing the
new first constraint:

si +
∑

k∈K

∑

m∈Mik

pikm · x ikm + ei = di + vi ∀i ∈ N (17)

These new continuous variables, with a lower bound of
zero, work in such a way, that only one of them can have a
value higher than zero for coil i. If coil i in mode m on line k
was finished processing before its due date di , si+pikm·x ikm <
di . This would violate the constraint since both sides have to
be equal to each other. Therefore, ei will take the value of
di − (si + pikm · x ikm), which represents the positive time left
until the due date and therefore the earliness of coil i. In
this case, vi will equal zero, since both ei and vi are to be
minimized. A vi greater than zero would lead to di + vi −
(si + pikm · x ikm)> di − (si + pikm · x ikm), therefore increasing
both vi and ei and thus the objective value.

The opposite case, in which coil i is delayed, is similar.
Now, si + pikm · x ikm > di . To not increase this difference and
hence the objective value, ei will equal zero. Because of the
necessary equality of both sides, vi will equal si+pikm · x ikm−
di , representing the positive time that coil i is delayed.

In the third and last case, in which the processing of coil
i is finished processing exactly on time, si + pikm · x ikm = di .
Since ei and vi are to be minimized, both variables will equal
their lower bound zero. In the altered objective function, ei
and vi are multiplied with the parameters r_v and r_e, to
provide a possibility for weighing the costs of tardiness and
earliness. The third and last parameter r_dd weighs the costs
of due date deviation against the weight of the stringer costs

45 Durlinger, 2015
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r_st r. Since weights cannot differ from 100 %, the following
constraints have to hold:

r_st r + r_dd = 1 (18)

r_v + r_e = 1 (19)

In addition, the variable zi is removed from the model
because absolute tardiness is not relevant anymore.

4. Computational study

4.1. Structure of the study and instances
After describing the industrial process and the mathemat-

ical model for creating and optimizing a schedule for CALs in
the before sections, this section will outline the structure of
the numerical study, which will be followed by the results and
the interpretations of it.

The computational study makes use of four main factors
proposed by Wegel et al. (2024), with each having five dif-
ferent levels ranging from Ver y low to Ver y high, which
are depicted in table 2. The heterogeneity of coils (HC) de-
scribes the possible range of each characteristic of the coils
and their distribution among them. This includes the width,
thickness, and length, as well as the mid-temperature and
mid-speed, and the symmetric intervals around them. These
will be used to assign physical properties to each coil during
the computational study, as well as to define the feasible pro-
cessing modes. The distributions of coil characteristics differ
in the five levels. TR(a, b, b) and U(a, b) represent a trian-
gular and uniform distribution, respectively.

As an example, the width in the Ver y high level of HC
will be distributed by the uniform distribution U(60,100),
since 60 cm is the lower bound and therefore equal to a and
b, the upper bound, equals 100 cm. Hence, the width of
each coil will be between 60 cm and 100 cm, with all values
having an equal probability. This aspect of the uniform distri-
bution increases the heterogeneity and difficulty of finding a
stringer-free solution since the characteristics will be evenly
spread between a and b, thus decreasing the probability of
compatibility between different coils. With a triangular dis-
tribution TR(a, b, b), however, most values will be close to b,
hence increasing the probability of compatibility. This is the
reason the distribution changes from a triangular to a uni-
form distribution with increasing intensity of HC.

Each coil receives a mid-temperature and -speed through
the distribution of midTemp and midSpeed in steps of ten
°C and ten m/min respectively, which represent the centers of
symmetric intervals. The widths of these intervals are deter-
mined by ∆temp and ∆speed. The ranges of these intervals
indicate the different feasible annealing temperatures and
strip speeds, under which the coil can be processed. A com-
bination of feasible annealing temperature and strip speed

46 Wegel et al., 2024, p. 20

is a feasible processing mode for that specific coil. In order
to limit the number of processing modes, to 48 in total, the
annealing temperature and strip speed in processing modes
only vary in increments of ten °C and 20 m/min, respectively.
To give an example, coil i in the Basecase scenario has a mid-
temperature of 680 °C and a mid-speed of 510 m/min. Thus,
the intervals with ∆temp = 20 and ∆speed = 20 are [670
°C; 690 °C] and [500 m/min; 520 m/min]. The resulting
feasible processing modes for coil i are [(670, 500), (670,
520), (680, 500), (680, 520), (690, 500), (690, 520)], with
the first entry being the annealing temperature and the sec-
ond being the strip speed. The maximum number of feasible
processing modes per coil is therefore six.

This holds for every level of HC, except for the Ver y high
level, due to the narrower interval widths. In this case, the
annealing temperature and strip speed can only vary by +
ten °C and + ten m/min, respectively. The intervals in the
example from above are therefore [680 °C; 690 °C] and [510
m/min; 520 m/min], resulting in only two possible process-
ing modes [(680, 520), (690, 520)]. Hence, each coil has
two to six different processing modes, depending on the level
of HC. An extension to the HC is the distribution of the length
of coils. This results in far more heterogeneous processing
times pikm since the processing time of coil i on line k in pro-
cessing mode m is defined as the length of coil i divided by
the strip speed of mode m. This minor extension will be in-
cluded in all models used in the computational study.

The urgency of the coils (UC) defines the size of the time
horizon that is used for the distribution of the individual due
dates. As with HC, lower levels distribute the due dates via
a triangular distribution, while higher levels distribute them
with a uniform distribution or a mixture of both, thus spread-
ing the due dates more evenly on the time horizon. Adding
to this, the uniform distribution distributes more due dates
close to the start of the schedule than the triangular distribu-
tion. By additionally decreasing the value of a by increasing
the UC, the earliest due date will also be decreased, since
both the triangular distribution TR(a, b, b) and the uniform
distribution U(a, b) are using a as the earliest possible due
date. These factors restrict the feasible solution space and
could thereby be detrimental to finding an optimal, stringer-
free schedule. The latest possible due date b is a function
of N , which is defined as f (N ) = avg_proc_t ime · N /K ,
with avg_proc_t ime being the sum of coil i’s length divided
by the strip speeds of feasible process modes Mik over all
coils and processing lines, which is then divided by the prod-
uct ofN andK . That the values of a and b both depend on
the number of coils N assures that the time horizon is ade-
quate to the instance size and does not lead to infeasibility
with a higher number of N .

Process flexibility (PF) defines the compatibility between
consecutive coils in terms of their thickness, width, anneal-
ing temperature, and strip speed. Higher PF allows for a
higher difference in these characteristics, thus increasing the
scheduling flexibility. To give an example, the difference in
widths between two consecutive coils in the Basecase sce-
nario can be up to five cm, without having to introduce a
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Table 2: Parameterization of the different factors and levels.46

Factor
Level

Very low Low Basecase High Very high

Heterogeneity coils

distribution
TR(a,b,

(a+b)/2)
TR(a,b,

(a+b)/2)

50%TR(a,b,
(a+b)/2),
50%U(a,b)

U(a,b) U(a,b)

wid th(a, b) [cm] 70, 90 60, 100 60, 100 60, 100 60, 100

thickness(a, b) [cm] 0.15, 0.35 0.1, 0.499 0.1, 0.499 0.1, 0.499 0.1, 0.499

leng th(a, b) [km] 15, 16 14, 17 14, 17 14, 17 14, 17

midTemp(a, b) [°C] 690, 720 680, 730 680, 730 680, 730 680, 730

∆temp [°C] 20 20 20 20 10

midSpeed(a, b) [m/min] 520, 580 510, 590 510, 590 510, 590 510, 590

∆speed [m/min] 20 20 20 20 10

Urgency of coils

distribution TR(a,b,b) TR(a,b,b) TR(a,b,b)
50%TR(a,b,
(a+b)/2),
50%U(a,b)

U(a,b)

a [min] |N | · 2 |N | · 1.5 |N | |N | |N |

b [min] f (N ) + a f (N ) + a f (N ) + a f (N ) + a f (N ) + a

Process flexibility

∆wid th [cm] >5 >5 >5 >10 >15

∆thickness [mm] >0.05 >0.1 >0.1 >0.1 >0.2

∆temp [°C] >0 >0 >10 >10 >20

∆speed [m/min] >0 >20 >20 >20 >20

Stringer processing

t ime [min] 0 1.5 3 10 15

stringer between them. If the difference extended five cm,
a stringer would have to be added to bridge the differences.
Thus, higher PF minimizes the need for stringers and vice
versa. Please note, that the length has no PF since it does not
have an impact on the welding or process mode compatibility.

The stringer processing time (SPT) defines the amount
of time needed to process a stringer if introduced into the
schedule. A high SPT diminishes flexibility in terms of time
constraints and tardiness. There were no different stringer
costs added to the base model since these are the only costs
that are being considered. Therefore, different stringer costs
would not affect problem-solving in any way. However, the
extensions include relative stringer costs through r_st r, since
the minimization of stringers is only one of two different sub-
objectives.

Since the optimization model was built for a PHAL, three
lines with different specifications were chosen for the numer-
ical studies, if not stated otherwise. For this study, the hetero-
geneity of the lines will be limited to the width of the coils the
line can process. The first line can process all coils, regardless

of their width. Only narrow coils can be processed on the sec-
ond line, while only wide ones can be processed on the third
one. This follows the line specifications selected by Wegel et
al. (2024), which were adopted for this study, as well as the
maximum solving time of 720 seconds. This time limit is not
a hard limit, hence some optimizations might slightly exceed
it. The exact line specifications depend on the chosen level
of HC. They are configured such they can only process coils
that are five cm above or below the width that represents the
center of the width range. As an example, with High HC, the
second line can only process coils with a width of less than
or equal to 75 cm.

First, the tuning parameterization will be discussed. Tun-
ing influences the behavior of the solver and thus could in-
crease its performance.

The second part consists of a study on different instance
sizes and the Basecase scenario for each factor. For each in-
stance size, the service level will vary between low, medium
and high, with low representing a service level of zero %,
medium representing ten % and high 20 %. Each optimiza-
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tion in the numerical study will be conducted with the same
ten seeds, to ensure a certain degree of comparability be-
tween the different instant sizes and sections.

A seed determines the outcome of randomness, like the
distribution of coil characteristics or due dates. Therefore,
by increasing the number of coils, new coils will be added to
the already existing ones. Hence, two calculations with the
same parameters and the same seed yield nearly the same
result, but the optimization itself could still be affected by
minor randomness.47 This assures that differences in solu-
tion characteristics between two calculations with different
parameters, i.e., different service levels, are mostly caused
by the different parameters and not by randomness.

This section of the study aims to uncover possible trends
that occur with certain parameterizations. The solutions and
performance achieved with the default solver will be com-
pared with the tuned solver. At the end of this part, an in-
stance size will be chosen that will be used for the rest of the
study.

For the third part of the numerical study, the Best-case
and Worst-case scenarios are defined by using the different
factors in table 3.

Table 3: Parameterization of the Worst- and Best-case scenario.

Scenario HC UC PF SPT

Best-
case

Very low Very low Very
high

Very low

Worst-
case

Very
high

Very
high

Very low Very
high

The results of these extreme cases will be compared with
the Basecase scenario to determine the impact of the four
factors. Additionally, the factors PF and HC will be altered
in the Best- and Worst-case scenarios, respectively, to further
investigate their influence. The levels used for the factors are
Ver y low, Basecase and Ver y high.

The fourth section will explore the impact of changing
factor and model specifications on the solution. First, the
number of processing lines in the Basecase scenario will be
altered, as depicted in table 4.

Table 4: Parameterization of processing line altering cases.

Case Alteration

Addition Addition of processing line, that can
process all coils

Removal I Removal of processing line, that can only
process wider coils

Removal II Removal of processing line, that can only
process narrower coils

47 Miltenberger, 2023b

The results will be compared to the Basecase scenario
with the default number of processing lines, with emphasis
on the number of introduced stringers and tardiness. Sec-
ondly, the a and b parameters used in the UC will be reduced
to study the impact of earlier due dates on the feasibility of
the scheduling. For each of the cases, the Basecase scenario
with a Ver y high UC will be used.

The last section compares some aspects of the solutions of
the original model with the solutions of the expanded mod-
els. The first expanded model to be studied will be the model
which aims to minimize both the number of stringers and ab-
solute tardiness. In addition to varying weights of stringer
and tardiness costs, the UC will be altered to study its influ-
ence on the solution. This results in the cases in table 6 that
will be explored with a Ver y low, Basecase and Ver y high
UC.

These cases are chosen to accommodate for different
weighing preferences and since it is assumed, that under no
circumstances one of the costs could be neglected. Thus, no
case only considers stringer or tardiness costs.

The second expanded model, which aims to minimize
stringer, earliness and tardiness costs, will also be studied
using the different cases in table 7. Different stringer and
due date deviation weights will be combined with different
earliness and tardiness weights, which are the components
of the due date deviation.

The entire computational study consists of 1180 individ-
ual runs, with an approximate total computation time of 140
hours and was conducted on a computer with a Ryzen 7
3700X CPU, 16 GB of 3200MHz memory, and Windows 10.
The CPU frequency could have differed due to changing room
temperature and longer computation sessions, thus slightly
affecting the performance of some optimizations.

4.2. Results and interpretations
4.2.1. Tuning of the solver

In the following, the tuning for each instance size will be
briefly explained, which was defined through trial and error.
These runs and optimization times were not included in the
above-mentioned numbers of 1180 runs and 140h. It has
to be noted, that the tuning parameters of a lower instance
size are also applied to higher instance sizes, if not stated
otherwise.

The two smallest instance sizes ten and 20 coils received
only minor tuning. The so-called PreSolve was set to two,
which is an aggressive setting. PreSolve tightens the model
before solving it by, as an example, removing redundant and
inactive constraints, thus increasing the probability of find-
ing a feasible solution and the performance of the solver in
general. The duration of PreSolve was cut short with the
PrePasses parameter since smaller instances already have
smaller models and thus find feasible solutions fast, as will
be explained later in the second section. Another parameter,
Cuts, was set to conservative, which behaves like PreSolve
by tightening the model. The difference between PreSolve



H. A. Hönerloh / Junior Management Science 10(3) (2025) 781-809792

Table 5: Parameterization of due date altering cases.

Case Alteration a [min] b [min]

100 % Very high UC 40 1306

75 % Very high UC and reduction of a and b by 25% 30 979.5

50 % Very high UC and reduction of a and b by 50% 20 653

25 % Very high UC and reduction of a and b by 75% 10 326.5

Table 6: Parameterization of cases with different stringer and
tardiness weights.

Case Stringer weight
[%]

Tardiness weight
[%]

1 80 20

2 65 35

3 50 50

4 35 65

5 20 80

Table 7: Parameterization of cases with different stringer, due date
deviation, earliness and tardiness weights.

Case Stringer:Due
date
deviation
weight [%]

Earliness
weight [%]

Tardiness
weight [%]

65:35

1 80 20

2 65 35

3 50 50

4 35 65

5 20 80

50:50

6 80 20

7 65 35

8 50 50

9 35 65

10 20 80

35:65

11 80 20

12 65 35

13 50 50

14 35 65

15 20 80

and Cut is that Cuts tightens the model during the solving
process and not before it, as PreSolve does.48

The PrePass parameter will be set to automatic or neg-
ative one when solving instances with more than 20 coils,
allowing for a longer PreSolve and thus more tightening.
Additionally, Gurobi-intern heuristics are maximized through
the heurist ics parameter. Gurobi has many types of complex
heuristics that can improve the ability to find a feasible so-
lution significantly. By increasing the heurist ics parameter,
the solver will spend more time on heuristics. The reason
for this aggressive parameterization will be discussed in the
next section regarding figure 2. Another tuning parameter,
the M I PFocus, was modified with instances of 50 coils and
higher. It influences, how much time will be spent on find-
ing feasible solutions and on the optimality of the solutions.
The M I PFocus was parameterized to one to focus on finding
feasible solutions rather than proving their optimality with
the MIPGap. The MIPGap is a qualifier of a feasible solution,
that only exists in Gurobi with MIPs. It is a relative value
that represents the minimal optimality of the solution and is
defined as |Ob jBound − Ob jVal|/|Ob jVal|. To explain the
MIPGap, the solving process of Gurobi has to be briefly ex-
plained first.49

For MILPs, Gurobi uses the so-called branch and bound
approach. The solving process starts by solving the model
without its integrality restrictions. If the resulting solution
does not violate any restrictions, the solving stops since the
solution is optimal. But in most cases, some variables of the
solution violate constraints. In this case, one of these vari-
ables will be chosen as a branching variable and the infea-
sible solution becomes a node, from which branches extend.
These branches are MIPs, that are more restricted in the pos-
sible values of the branching variable. After solving these
MIPs, they can either generate a feasible solution or become
a new node. This process will then be repeated until either
a feasible solution was found or it was proven that there are
no feasible solutions in this branch. This definitive end of a
branch is called a leaf, but all yet unexplored branches are
also leaves. If the first or a new best solution was found,
it becomes the incumbent solution. The objective value of
this incumbent solution is the Ob jVal mentioned above in
the formula for the MIPGap. The Ob jBound, also called the
best bound, is the lowest or highest value that the solver ap-
proximates can be achieved by taking the lowest or highest

48 Gurobi, n.d.-c and Gurobi, n.d.-b
49 Miltenberger, 2023a and Gurobi, n.d.-b
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Table 8: Tuning parameterization for each instance size.

Parameter

# coils
10 20 30 40 50 60 70

Cuts 1 1 1 1 1 2 2

PrePasses 1 1 -1 -1 -1 -1 -1

PreSolve 2 2 2 2 2 2 1

Heuristics - - 1 1 1 1 1

MIPFocus - - - - 1 1 1

NodefileStart - - - - - - 0.5

Threads - - - - - - 8

value of all the different leaves, depending on the direction
of the optimization. For a minimization model, which is used
in this study, it will take the lowest value. This best bound
can change throughout the solving process through new in-
formation about the feasibility of a solution with the best
bound as an objective value. As an example of a minimization
problem, if the solver notices that the best bound cannot be
achieved in a feasible solution, it could raise the best bound
to the second-lowest value.50

The MIPGap, therefore, is the absolute difference be-
tween the objective value of the best already found solution
and the objective value of the best solution the solver ap-
proximates could be possible, relative to the former. Hence,
the MIPGap represents the maximum relative improvement
the solver approximates could be possible over the current
incumbent solution.51 Another function of MIPGap is, that
the solver will terminate the solving process if the MIPGap
of one solution is equal to or lower than the MIPGap that
was set as a threshold, with the default threshold being close
to zero %, or if the difference between the lower and upper
bound is less than the MIPGap multiplied with the upper
bound.52

For optimizations with 60 coils, the Cuts parameter
was set to two, aggressive, to improve the tightening of
the model. The number of out-of-memory errors increased
dramatically with optimizations of instance sizes with 70
coils, which will be discussed later. To avoid this error, the
number of CPU threads was limited to eight by using the
parameter Threads and the RAM usage was reduced by
increasing Node f ileStar t to 0.5. Higher thread counts
generally lead to higher performance, but also demand more
memory, which is why the amount of available threads for
Gurobi was limited. Additionally, the Node f ileStar t pa-
rameters relieves the RAM by storing data on the disk. Both
of these parameters thus decrease RAM usage and out-of-
memory errors, while also decreasing performance, which is
why they have to be fine-tuned to not be detrimental to the

50 de Harder, n.d. and Gurobi, n.d.-c
51 de Harder, n.d.
52 Miltenberger, 2023a and Gurobi, n.d.-b

optimization process.53

4.2.2. Impact of increasing instance size
Before inspecting all the data from the first section of the

numerical studies, figure 2 has to be considered first. The
figure depicts the number of optimizations per instance size
and per service limit that did not result in a feasible solution.

It can be observed, that this number rises with the in-
creasing instance size and that this trend is weaker in the
tuned model and with higher service levels. As previously
described, α determines the maximum amount of delayed
coils relative toN . Therefore, an optimization with a higher
α is less restrained and has higher scheduling flexibility than
one with a lower service level. This data suggests, that due
to the higher scheduling flexibility, optimizations with higher
service levels can solve for a feasible solution more easily. But
it is important to note that this data includes three different
reasons for the failed optimization.

The first reason is, that the Gurobi solver could not find
a feasible solution during the 720 seconds time limit, thus
aborting the solving process. As previously described, this is
affected by the service level. Most unsuccessful optimizations
occurred because of this reason. The second reason was an
out-of-memory error. It occurs if the Gurobi solver demands
more RAM than is physically available. This terminates the
solving process, without finding a feasible solution prior in
all cases. This happened only with greater instance sizes, es-
pecially with 70 coils. But the two failed optimizations at an
instance size of only 20 coils happened due to a different rea-
son. These optimizations failed due to the infeasibility of the
model, in both the default and the tuned model. Since this
only happened with a low service level, it suggests that these
two seeds cannot be optimized for an instance size of 20 coils
without delay. The most probable cause is a combination of
low compatibility due to high coil characteristic heterogene-
ity, early due dates di , and high coil processing times pikm.

Regardless of the reason, this results in a decreasing num-
ber of data points for greater instance sizes. Hence, the va-
lidity of trends observed in this data could be affected by a

53 Gurobi, n.d.-b and Gurobi, n.d.-a, p. 821, 807
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Figure 2: Number of optimizations per N and service level that yielded no feasible solution with the default and tuned solver.

selectivity effect, in which only optimizations of such seeds
yield feasible solutions, that are easier to solve. This could
be due to a more homogeneous distribution of coil character-
istics, later due dates, and many other factors. Additionally,
these seeds do not have to be easier to solve than others for
every instance size since additional coils can, as an example,
have earlier due dates and thus decrease the scheduling flex-
ibility of the optimization. This notion has to be considered
throughout this section of this study.

As depicted in figure 2, optimizations with the tuned
solver yielded a feasible solution more often than with the
default solver, with 40 failed optimizations with the default
and only 33 unsuccessful optimizations with the tuned solver,
with a total amount of 210 optimizations per solver. The im-
pact of the tuning seems to rise with the increasing number
of coils. This is due to the fact, that with higher instance
sizes, more tuning was applied since these had a higher
ratio of failed optimizations. After discussing the problem
of data density, the characteristics of the solutions will be
investigated in the following.

Figure 3 displays that the average number of introduced
stringers varies between different instance sizes and service
levels but generally seems to decline with the increasing
number of coils. The tuning of the solver seems to have
no significant effect on the quality of the solution since the
objective values yielded by both solvers are mostly similar
and only vary by a small amount. This was to be expected
because the tuning mainly focussed on improving the solver’s
performance and not the solutions yielded by it.

But it can be observed, that allowing delays and thus in-
creasing the scheduling flexibility typically results in more
optimal solutions regarding stringer introduction. Optimiza-
tions with a service level of 20 % and hence the highest
scheduling flexibility generally yielded the best solutions con-
cerning stringers but differed only slightly from solutions ob-
tained with a lower service level of ten %. At 70 coils, the op-

timization of a particular seed yielded an exceptionally high
solution with both the default and the tuned solver.

Table 9: Results of seed 100 in optimizations with the tuned and
the default solver, 70 coils and a high service level.

#
stringers

# solu-
tions

MIPGap Tardiness

Tuned
solver

67 1 0.970 5

Default
solver

65 1 0.985 14

As shown in table 9, these extraordinarily high objective
values were the only feasible solution the solvers were able
to calculate in time. The high MIPGap of both solutions sug-
gests, that the optimality of these solutions either could not
be proved in time or that they are not optimal, with the lat-
ter being the more plausible explanation when regarding the
high objective values. The most significant difference be-
tween these solutions is the tardiness, which is much higher
with the default solver.

As previously described, the tuning should have little im-
pact on the solutions themselves. This, combined with the
fact, that it was the only feasible solution found, suggests that
this more optimal solution, regarding tardiness, is a result of
randomness. Even though these solutions could be character-
ized as outliers, they were still included in figure 3 because
they represent feasible solutions and could technically be im-
plemented, despite being probably insensible businesswise.

More exceptions to the downward trend are the solutions
yielded at an instance size of 20 coils across all service lev-
els. This is the same instance size that resulted in infeasibility
with two seeds, as described at the beginning of the section.
The objective values of nearly every seed across all service
levels increased when transitioning from ten to 20 coils, and
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Figure 3: Average number of introduced stringers per N and service level in optimizations with the default and tuned solver.

therefore it is not a result of an outlier as it was in the case
of 70 coils. Additionally, this suggests that this is not a ran-
dom occurrence but a trend. Hence, it might be beneficial to
observe the relative average number of stringers introduced,
which are depicted in figure 4.
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Figure 4: Average number of stringers relative to the instance size
of optimizations with the tuned solver in %.

Figure 4 portrays the average number of stringers rela-
tive to the instance size of the optimizations. To increase the
visualization, only data from the tuned solver is shown. The
figure depicts, that the absolute numbers of coils are deceiv-
ing in this regard and that in fact, the results from the opti-
mization with 20 coils are in line with the observed down-
ward trend. Now that the existence of a constant downward
trend, except for the case with seed 100 mentioned above, is
established, a possible explanation can be discussed.

To recapitulate, a stringer has to be introduced between

adjacent coils if the difference between the physical or mode-
specific or both characteristics of these coils is above the limit
specified by the process flexibility PF. The introduction of a
stringer can be avoided if the schedule introduces a third coil
between these incompatible coils, but this is only possible if
the third coil is compatible with the other two coils. An expla-
nation for the high relative number of introduced stringers in
optimizations with small instance sizes could therefore be the
absence or an insufficient number of these third coils that can
bridge the gap between two incompatible coils. By increas-
ing the number of coils, these gaps could then be closed or
narrowed by the new coils. The likelihood of this increases
with the increasing number of coils, which results in fewer
stringers that have to be introduced due to differences in
characteristics.

To give a simplified example, in which only the anneal-
ing temperature of the coils is considered as compatibility
restriction: Three coils have to be scheduled in sequence,
with coil one having an annealing temperature of 670 °C,
coil two having an annealing temperature of 740 °C and coil
three with an annealing temperature of 720 °C. The PF is 40
°C in a symmetric interval and the annealing temperature is
only distributed in increments of ten °C, as explained in sec-
tion 4.1. Thus, coil two and three are compatible with each
other, but not with coil one. Since there is no other coil to
bridge this gap, a stringer has to be added between them.
Now, a fourth coil has been added to the schedule with an
annealing temperature of 700 °C. It is therefore compatible
with coil three, but not with coils one and two. Since no coil
is compatible with coil one, a stringer still has to be added,
but the relative number of stringers decreased from 33,3 % to
25 %. If another coil with an annealing temperature of 680
°C or 690 °C would be added, it would close the gap and lead
to a stringer-free schedule. If it has a different annealing tem-
perature though, it would still be compatible with one of the
remaining coils and therefore, still only one stringer would
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be necessary, decreasing the relative number of stringers even
further. By adding more and more coils to this schedule, the
probability that one of the coils eventually closes this gap in-
creases.

The reason for the increase in the number of absolute
stringers from ten to 20 coils could therefore be that most
of the existing gaps could not be closed by the new coils and
that some coils may have characteristics which were incom-
patible with both ends of the gap, thus increasing the number
of stringers that have to be introduced. To summarize, the
probability of a single coil being compatible with the other
coils in the schedule is higher for a higher number of coils.
Thus, these schedules with a higher number of coils need
fewer stringers, since there are fewer gaps and more possi-
bilities to sequence these coils to avoid gaps. In the actual
optimizations performed in this study, there are more com-
patibility restraints as well as due dates to consider, which is
why in most cases there are still stringers introduced in the
schedule, even with higher numbers of coils. The impact of
the restriction by due dates can be observed by comparing
the average of the optimizations with a high and low service
level because, in fact, most optimizations do not utilize the
entire service level. This is portrayed in figure 5.

Since the service level is a parameter to limit the to-
tal amount of delayed coils relative to its instance size, the
threshold for relative tardiness for a high service level is 20
% and so forth. As mentioned above, it can be observed that
on average and with a high service level, at no instance size
the full service level of 20 % is leveraged, with the highest av-
erage being 19,25 %. The data suggests, that for most cases a
service level of 16 % to 17 % would suffice. This is supported
by the fact, that optimizations with a service level of ten %
always utilize the entire service level or almost all of it. This
does not imply that if the service level would be increased to
over 20 %, the solver would not leverage it. But it states, that
to receive the solutions displayed in figure 3, a service level
under 20 % would suffice, at least in most cases. As expected
with a low service level, the solver does not allow a delay of
coils.

The data also suggests a slight decrease in delays in opti-
mizations with a higher number of coils through the tuning
of the solver. But, as previously described, this could be af-
fected by the selectivity effect. When comparing the results of
figure 3 and figure 5, it can be observed that even though so-
lutions found with a service level of 20 % always had a higher
number of delays, they did not necessarily yield more opti-
mal solutions in terms of stringers than optimizations with
a service level of only ten %. In fact, the most significant
difference in average stringers introduced between the two
parameterizations was only 0,556 stringers, which occurred
in the case of an instance size of 60 coils with the default
solver and thus could be influenced by the selectivity effect.

The question that could arise is, if not profoundly posi-
tively affecting the solutions in terms of introduced stringers,
what is the benefit of using a higher service level? This ques-
tion could be answered by taking a look at figure 6.

The data of higher instance sizes, especially 60 and 70

coils, seems to be strongly affected by the aforementioned
selectivity effect and will therefore be disregarded in the
following discussion concerning the total optimization time.
The top graphs portray, that a higher service level usually
leads to a lower average total optimization time, which could
save costs caused by the operation of the computer, but that
in general, the total optimization time increases profoundly.
This trend can be explained by the bottom graphs, which dis-
play the extraordinary increase in variables and constraints,
and thus the size of the MILP. The stark increase in variables
is mostly driven by binary variables, like yi jkmn and x ikm.
Since the number of variables and constraints are not influ-
enced by the parameterization of the service level or tuning,
they are only displayed by one graph each. When comparing
the top with the bottom graphs, a positive correlation can
clearly be observed. Therefore, the probable explanation for
the increase in total optimization time is the growth of the
model the solver is trying to solve.

The size of the model has two different impacts on the
total optimization time. The first and most obvious is, that
it has to consider a growing number of constraints and vari-
ables when trying to find a feasible solution, which increases
the time it takes to prove the feasibility of it. But before the
model can be solved, it first has to be built, which is the sec-
ond impact of the model size. The time it took the solver to
build the model rose from only 4,5 seconds with ten coils to
over 90 seconds with 50 coils, which does not seem to be af-
fected by the service level or by tuning. Therefore, the model
should be kept as small as possible to avoid wasting opti-
mization time, which is especially important when certain
circumstances severely limit it. What seems to be affected by
the service level and by tuning is the solving time, which ac-
counts for the majority of the total optimization time. Tuning
can in fact increase the solving time through different param-
eterizations of PrePasses and Presol ve, as an example.54 In
the case of this study, the tuning thus seems to increase the
success rate of optimizations, especially with greater instance
sizes, at the cost of solving time. A higher service level, on
the other hand, seems to decrease the solving time, which
suggests that the solver can find optimal solutions faster if it
is less restricted. The MIPGap also seems to benefit from an
increased service level, as depicted in figure 7.

A positive trend between the MIPGap and the instance
size can be observed, as well as the trend that optimizations
with more scheduling flexibility tend to have a higher grade
of proven optimality, which can be explained by the lower
solving times. The lower the service level, the more opti-
mizations reach the solving time limit of 720 seconds and
thus have to abort the solving process. Hence, the solver has
no or less time to prove the optimality of the solution, result-
ing in a higher MIPGap. This does not necessarily result in
a worse solution, as the solutions, in terms of stringers, be-
tween a service level of ten % and 20 % only differed slightly,
as portrayed in figure 3. Thus, the general upwards trend of

54 Gurobi, n.d.-b
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Figure 5: Average tardiness relative to the different instance sizes per service level in optimizations with the default and tuned solver.
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Figure 6: Average total optimization time (top) and number of variables (bottom-left), as well as average number of linear constraints
(bottom-right) per service level and instant size in optimizations with the default and tuned solver.

the MIPGap could be a consequence of the increasing solv-
ing times of each seed. Hence, it could be advantageous

to choose a higher service level if the available optimization
time is severely limited or if a higher proven grade of opti-
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Figure 7: Average MIPGap per instance size and service level with the default and tuned solver in %.

mality of the feasible solution is preferred. The data from the
tuned solver seems to be affected by the selectivity effect, but
the MIPGaps of smaller instances seem to be similar to that of
the default solver. The mentioned increase in solving times is
displayed in figure 8 with data from optimizations solved by
the default solver due to its better visualization of this trend.
All boxplots were created with the median and the highest
and lowest value from the ten optimizations, as well as the
25 % and 75 % quartile.

Figure 6 already depicted the increasing average total
time. But this data could suggest that this applies to every
seed, when in fact it does not. The data in figure 8 portrays
that, starting from an instance size of 30, the differences in
solving times increase drastically if they are solved with the
two lower service levels. This increase can be observed from
40 coils onward, with the highest service level. The higher
number of optimizations reaching the time limit combined
with the higher average MIPGaps in optimization bound by
the lowest service level indicates, that the solver has no time
to prove the optimality of the feasible solution after finding it.
With a medium service level, fewer optimizations have to be
aborted due to the time limit and thus have time to prove the
optimality of the feasible solution, which results in a lower
average MIPGap. This is also true for the highest service level
that displays the fewest number of time limit terminations.

This concludes the first part of the numerical studies.
Based on the presented data, an instance size of 40 coils was
chosen for the following sections since it is the highest num-
ber of coils with a tolerable amount of failed optimizations.
In addition, the optimizations were conducted with the tuned
solver to increase the number of successful optimizations.

4.2.3. Best- and Worst-case scenario
For the third part, a Best- and Worst-case scenario was

derived from the different factors defined by Wegel et al.
(2024), which were described in section 4.1. The results will
be compared with the results achieved with the tuned solver

from the previous section. In addition, the PF and HC were
altered because it was suspected that these factors are the
most influential among them. A more detailed analysis of
the influence of each factor and level on the scheduling is
provided by Wegel et al. (2024).

Figure 9 compares the number of stringers introduced
between the Best-case scenario with a Ver y low PF and
the Basecase scenario. The data from the Ver y high and
Basecase PF is not portrayed, as no stringers are introduced
at any point in these scenarios. As previously observed, the
number of stringers decreases with higher service levels in
the Best-case as well due to the higher scheduling flexibility.
Compared with the results from the Basecase scenario, the
Best-case yields better solutions, in terms of stringers, for
every level of PF and for every service level. Even with Ver y
low PF, a stringer reduction of over 50 % can be observed.
Thus, a lower PF leads to an increase in stringer introduction,
but in this case, this effect is probably reduced by the Ver y
low HC. Since these effects could therefore counteract each
other, the stringer reduction may be a result of the lower UC
and SPT. If true, this could also result in fewer delayed coils,
which are depicted in figure 10.

By comparing the average tardiness in the Best-case sce-
nario - Ver y low PF with the tardiness from the Basecase
scenario, only a slight decrease can be observed. This differ-
ence increases with the B. PF, but does not with the highest
PF. Thus, the Ver y low UC and SPT do not lead to severely
less tardiness when HC and PF are parameterized as Ver y
low. But the increased scheduling flexibility through more
relaxed time constraints could still benefit the optimization,
thus decreasing the number of introduced stringers.

Figure 10 also displays the distribution solving times. The
data suggests, that the level of PF, in the context of the Best-
case scenario, has an immense impact on the solving time.
The optimizations with the lowest PF have the highest solv-
ing times, even higher than in the Basecase scenario. But by
increasing the PF to the Basecase level, the median solving
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Figure 8: Distribution of solving times in seconds per instance size and service level with the tuned solver.
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Figure 9: Average number of introduced stringers per service level
in the Best-case scenario with Ver y low PF and Basecase scenario.

times decrease to a fourth. Further increasing the PF to Ver y
high, however, does decrease the solving times only slightly.
That the solving times for the two higher investigated PF lev-

els are remarkably lower than in the Basecase scenario can be
explained by the parameterization of the HC, UC and SPT. As
previously described, the Ver y low UC and SPT increase the
scheduling flexibility by relaxing the time constraints. The
Ver y low HC, on the other hand, increases the general com-
patibility between different coils, which leads to more fea-
sible, stinger-free processing sequences. All of these factors
could result in more solutions being feasible, thus decreas-
ing the time it takes the solver to find an optimal, feasible
solution. This could be applied to the lowest PF as well but
in reverse. It could suggest that the Ver y low PF drasti-
cally limits the number of feasible, stringer-free processing
sequences of adjacent coils, which increases the solving time
since the use of stringers has to be minimized. In this regard,
the other very beneficially parameterized factors cannot off-
set the Ver y low PF, which could indicate that the PF is the
most impactful factor of the four. This statement could be
confirmed by the data from the Worst-case scenario.

Figure 11 portrays the impact of the HC on the Worst-case
scenario in terms of introduced stringers and failed runs. As
previously described, Ver y low HC is beneficial for stringer-
free sequences. In this case, the HC seems to impact the av-
erage number of stringers more than the other factors, dis-
played by the fact that the lowest HC in combination with
the Worst-case yields better solutions than the Basecase sce-
nario. This would contradict the statement, that the PF is the
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Figure 10: Average number of delayed coils and distribution of solving times in seconds per service level in the Best-case instances and
Basecase scenario.

most influential factor. But the data from the two other HC
parameterizations support this claim. While the optimiza-
tions with Worst-case and Basecase HC did still yield some
but very high solutions, no optimization was able to calculate
a feasible solution with the highest HC.

In general, the Worst-case scenario seems to negatively
impact the number of successful optimizations. As previ-
ously described, the reasons are twofold. While all runs with
the lowest service level fail due to infeasibility, optimizations
with a higher service level fail because of the solving time
limit, with two exceptions with a medium service level and
Ver y high HC. This demonstrates the great impact of the
Worst-case and especially of the HC on the feasibility of the
model. Before finalizing the second part of this numerical
study, one last test was conducted to analyze which of the
two factors, HC and PF, impact the solution the most. To ac-
complish this the case in table 10 was defined.

Table 10: Case parameterization to identify the most impactful
factor.

Case HC UC PF SPT

Impact Very low Basecase Very low Basecase

The figure 12 displays the differences in stringers and de-
layed coils between the Basecase scenario and the Impact
case, by subtracting the average number of stringers and de-
layed coils in the Impact case from the Basecase scenario.

It can be concluded, that the PF has a greater impact
on these aspects of the solution than the HC. This observa-

tion was confirmed by a second Impact case, which used the
Basecase scenario and Ver y high PF and HC. But it has to be
noted that this only applies to the definitions of the different
levels of HC and PF by Wegel et al. (2024). Both factors indi-
cate a strong influence on the characteristics of the solution
and should therefore be optimized to achieve optimal solu-
tions in real-world applications. After studying the drastic
effects of the Best- and Worst-case, different parameteriza-
tions of the model will be explored in the following section.

4.2.4. Alteration of processing lines and due dates
First, the number of processing lines in the model was

altered. To recapitulate, in the first case, an additional line
was added to the model, which can process every coil. In
the second case, Removal I, the processing line that can only
process wider lines was removed, while the processing line
that can only process narrower coils was removed in case
three. The line that can process every coil was not removed
because it would lead to infeasibility since some coils could
not be processed.

Foremost, none of the three cases displayed in figure 13
seems to have a great impact on the number of introduced
stringers. As expected, the number of stringers decreased in
the addition case and increased in both removal cases, but
all these effects were only minor. The reason the addition of
one processing line generally reduces the number of stringers
is that an incompatible coil or a sequence of coils, that is in-
compatible with another sequence of coils, can be processed
on the additional line, thus reducing the number of stringers
by one.
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Figure 11: Average number of introduced stringers and failed runs per service level in the Worst-case instances and Basecase.
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Figure 12: Differences in stringers and delayed coils between the Impact case and Basecase per service level.

To give an example, four sequences of coils have to be
scheduled, with each coil in a sequence being compatible
with every other coil in the same sequence. However, the
sequences are incompatible with each other. If these four se-
quences are processed on one processing line, three stringers
would have to be introduced to ensure compatibility. If a
new processing line would be added, one of the sequences
could be processed on the new line, reducing the number of
stringers to two, but nothing more could be done to reduce
the number of stringers further.

Therefore, the maximum benefit of adding a processing
line, in terms of stringer use, is the reduction of introduced
stringers by one. This benefit could increase if the schedule
introduced stringers to not violate the service level, but this
was not the case for these optimizations.

The reason the data does not show a reduction of the av-
erage introduced stringers by one is that two optimizations,
that were unsuccessful in the Basecase scenario, were suc-
cessfully solved in the addition case and have a stringer count
of six, thus increasing the average number of stringers. In

fact, all three cases had only one failed optimization each
with a low service level. The explanation for this reduction
could be the solving itself since the solver behaves differently
even if only one parameter changed.55 Because the Addition
case and the Removal cases have opposite effects, the addi-
tion of a processing line increases the number of feasible so-
lutions and the removal decreases them, it is the most likely
explanation.

The removal of a processing line influences the number
of stringers in the same way as an addition of a line does
but in reverse. Thus, if no stringers are introduced to not
violate the service level, the maximum increase in stringers
is one. This is true for every optimization with a MIPGap
of zero %. However, some optimizations with a MIPGap of
zero % did not suffer any increase in stringer use, suggesting
that they did not utilize the line in the schedule. But some
optimizations with a MIPGap of over zero % had an increase
of up to three stringers. Hence, the optimizations either had

55 Miltenberger, 2023b
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Figure 13: Average number of stringers in the three line-altering
cases and Basecase scenario per service level.

to introduce stringers to comply with the service level and the
solver was unable to prove the optimality of the solution in
time or the solver simply could not find the optimal feasible
solution until it had to terminate the solving process. This
termination happened more often with the addition of one
line and is presented in figure 14.

As portrayed, the majority of optimizations with an addi-
tional processing line and a low service level had to be ter-
minated due to the time limit. This results in a higher MIP-
Gap, as mentioned before. Higher solving times and MIP-
Gaps than in the Basecase scenario are also observed with
higher service levels but are not as severe with the highest
one. This overall trend probably results from the increasing
model complexity, which could also be observed in figure 6
from the first part of this numerical study. In this case, how-
ever, the increase results from the additional line and not
from additional coils. The adverse effect can be examined
in figure 15.

The data indicates a decreasing solving time through
complexity reduction when applying a medium or high ser-
vice level, but not with a low one. A possible explanation
could be, that the restrictions caused by the removal of a
processing line in combination with the low service level
result in many former solutions being infeasible and thus a
longer search for a feasible solution. That Removal II dis-
plays lower solving times than Removal I could suggest that
the line which can only process wider coils and was removed
in Removal I, was utilized to a higher degree than the line
that was removed in Removal II. The reason for this is the
partially triangular distribution of the coil width due to the
Basecase level of the HC, which results in more coils being
wider than narrower. Hence, the effect of the removal of one
line depends on the HC setting.

The last parameter to investigate is tardiness, which indi-
cates to not be severely affected by the addition or removal
of a processing line. That the number of delays only com-

plies with the service level and does not have to be mini-
mized could explain why tardiness did not decrease with an
additional line. Additionally, no increase in tardiness sug-
gests that most optimizations in Removal I and Removal II
had enough scheduling flexibility to find feasible solutions
with similar tardiness, even with only two lines.

In contrast, tardiness was the most important factor in
the next part of the numerical study, in which the time hori-
zon for the due dates was moved closer to the beginning
of the schedule. These earlier due dates are expected to
have a certain effect on the number of stringers and delayed
coils. With earlier due dates and an imposed service level,
the schedule has to implement more stringers to not exceed
the allowed tardiness. This further reduces the scheduling
flexibility due to the SPT and thus increases the difficulty of
finishing the processing of other coils before their due date.
Therefore, an increased number of failed optimizations and
a higher stringer and tardiness count in successful runs were
expected.

The data displayed in figure 16 shows an increasing num-
ber of failed optimizations, which aligns with the expecta-
tions. In case 100 %, most optimizations are terminated and
do not fail because of infeasibility, suggesting that they could
be solved with a higher time limit. But this changes with case
50 %, in which no optimization with a low service level is fea-
sible, while most unsuccessful optimizations with a higher
service level are terminated. By reducing the values of a and
b by 75 %, almost all optimizations with a low and medium
service level are infeasible, but only one optimization with
a high service level. Therefore, provided with a high ser-
vice level and a higher time limit, most optimizations could
still yield feasible solutions. However, the necessary solving
time and the quality of the resulting solution cannot be de-
termined without further studies.

The second expectation was a rise in the number of intro-
duced stringers. Due to the very low number of solutions, the
following interpretations could be heavily influenced by the
selectivity effect. Because of this, only the most important in-
formation will be presented in table 11 and briefly discussed.
If a case is not included in a service level, then no optimiza-
tions for that case and service level yield a feasible solution.

As indicated by the data, the number of introduced
stringers increases through the shift of the due dates. In
addition, almost all optimizations completely utilize the ser-
vice level. Both of these observations represent an increase
in comparison to the Basecase scenario and align with the
expected results, thus concluding the third part of the nu-
merical study.

4.2.5. Numerical studies on the extended models
The last part of the numerical study consists of several

tests conducted on the extended models described in sec-
tions 3.4.2 and 3.4.3. Both additionally incorporate the
release dates of coils from section 3.4.1. The first extended
model minimizes stringers and absolute tardiness. First,
the average number of stringers and delayed coils in the
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Figure 14: Distribution of solving times in seconds and average MIPGaps in % per service level in the Addition case and Basecase scenario.
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level in the Removal I and II cases, as well as in the Basecase

scenario.

Basecase scenario with Ver y low and Ver y high UC will be
examined.

Figure 17 depicts an expected trend. The number of de-
layed coils is the highest if it has only a weight of 20 % of the
objective value, which has to be minimized. Additionally, the
number of stringers is the lowest at this point, since it has a
weight of 80 %. Thus, the optimal solutions seem to delay
some coils to minimize the number of stringers, since it has
a much higher weight. This trend changes, with tardiness
being reduced at the cost of stringers with higher weights of
tardiness. As portrayed with Ver y low UC, the number of
delayed coils is, even at its highest point, very low. Thus,
the trade-off between stringers and tardiness cannot be ob-
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Figure 16: Number of failed runs per service level in the four
different due date altering cases.

served as well as with the Ver y high UC on the right side of
figure 17.

In this scenario, an almost one-to-one trade-off between
the number of delayed coils and stringers can be observed
with the increasing weight of the former. The mechanism be-
hind the trade-off is similar to the one discussed in the third
part of the study, regarding the addition and removal of pro-
cessing lines. If the tardiness has almost negligible weight,
the coils are sequenced in a way that the number of stringers
is minimized with no regard to the number of delayed coils.
But if the tardiness weight increases, the objective value may
benefit from introducing stringers to finish the processing of
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Figure 17: Average numbers of delayed coils and stringers with different UCs and weights in the first extended model.

Table 11: Stringer use and tardiness in the cases 100 %, 75 % and
50 %.

Service
level

Case # stringers # delayed
coils

Low

100 % 6 0

Medium

100 % 6.667 4

75 % 7 4

50 % 7 4

High

100 % 5 7.83

75 % 5.75 8

50 % 7 8

coils before their due date, thus decreasing the number of
delayed coils at the cost of stringers. By further increasing
the tardiness weight, more stringers are introduced to com-
ply with due dates and therefore to minimize the objective
value. With earlier due dates, this trend is better to observe
since it is harder to comply with them, which increases the
number of stringers that have to be introduced to decrease
the tardiness by one unit and vice versa.

Due to the different optimization objectives, the compa-
rability between the extended model and the base model is
limited. But the results of the extended model with a tardi-
ness weight of 20 % are similar to the results yielded with
a medium service level in the base model, presented in fig-
ure 3. The difference, however, is the UC, which is higher in

the extended model and thus highlights its performance to
minimize stringer use and tardiness at the same time. But
this high performance comes with the cost of increased solv-
ing time, portrayed in figure 18.

Generally, there is a wide disparity in solving time be-
tween different optimizations in the extended model, regard-
less of the weight ratio, with most median solving times being
higher than that of the Basecase scenario with a low service
level.

The highest median solving times and terminations in the
extended model can be observed with the two higher stringer
weights of 80 % and 65 %. The median solving times of the
other instances are significantly lower, which could suggest
that the minimization of stringers is more complex than that
of delayed coils. But this cannot explain, why the median of
the solving time increased by increasing the tardiness weight
further to 65 %. This effect mostly stems from one optimiza-
tion, which suffered an increase of 510 seconds in solving
time from 210 seconds to 720 seconds. Without this run,
the median would be 283 seconds, which is similar to the
instances with 50 % and 80 % tardiness weight and could
indicate that this optimization is an outlier.

The solving times of the extended model with a Ver y
high UC are not depicted, since all of them had to be ter-
minated due to the time limit. Nonetheless, every optimiza-
tion yielded a feasible solution, which is a drastic increase
over the number of failed runs in case 100 % of the third
part of the numerical study, displayed in figure 16. Since
every result with the extended model and a Ver y high UC
also had a low relative tardiness and could therefore com-
ply with the medium and high service levels implemented in
the base model at almost every weight ratio, it suggests that
it could be more performant to minimize both stringers and
tardiness than to implement a service limit and only minimize
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Figure 18: Distribution of solving times in seconds per service level in the base model and per weight ratio in the first extended model.

stringers.
Figure 19 displays a similar trend as in the first extended

model, but in this case, the trade-off happens between earli-
ness, tardiness, and stringers. The number of the latter is far
greater than in the base and the other extended model. This
could be explained by the high MIPGaps resulting from the
fact that every optimization had to be terminated due to the
time limit.

Therefore, it is possible that the displayed stringer counts
are far above the optimal number of stringers. But it has to
be noted that every optimization was successful, which is an
improvement from the base model. Since the first extended
model also had fewer failed runs, the service level might be
too restricting, especially in its lower specification. The ser-
vice level is the most likely cause due to it being the only part
that was removed in both extended models.

Due to the lack of reference points, the exact values
of earliness and tardiness cannot be compared with other
studies. It can be observed, that by increasing the tardi-
ness weight the tardiness can be minimized drastically, but
by changing the earliness weight, the earliness only differs
slightly. This could result from the different mechanisms of
how to minimize tardiness and earliness.

Tardiness can be reduced by finishing the processing of
each coil before its due date, which might influence the coil
sequencing and thus the stringer use, as previously described.
In contrast, to minimize earliness the schedule has to be pro-
longed, which can be achieved with two methods. The first
method would be to introduce stringers in the sequence, even
if they are not necessary since they also have a SPT. The sec-
ond method is to choose longer-lasting processing modes for
the coils, which could increase the stringer use as well since
the compatibility of these modes would not be as important
as it was before. Since stringers still have to be minimized
as well, it is more likely that the second method is used to

prolong the schedule and that the additional introduction of
stringers is therefore only a result of the increasing incom-
patibility between the processing modes.

Regardless of the reason, an increase in stringer use can
be observed with increasing earliness weights, as well as a
higher overall stringer use with higher due date deviation
and thus earliness weights, which suggests that one of the
proposed methods is being utilized. It has to be noted that
the change in stringer use is a direct result of the changing
earliness and tardiness weights since the stringer and due
date deviation weights are fixed throughout the instance. To
further prove the earliness minimization mechanism, the op-
timizations of the instance with a due date deviation weight
of 65 % were repeated, but with a Ver y high UC.

Figure 20 portrays a similar stringer use but a signifi-
cantly lower earliness and therefore supports the proposed
mechanism. This is because, as observed in table 11 and fig-
ure 17, earlier due dates result in higher stringer use due
to the previously described mechanism. But the stringer use
did not increase by increasing the UC, which could be a re-
sult of less utilization of the proposed earliness minimization
mechanism, as this would result in fewer stringers. Addi-
tionally, the reduction of stringer use through the reduction
of the earliness weight did decrease slightly, but not as much
as expected. Therefore, more tests need to be conducted,
including alterations of the SPT or the data has to be ana-
lyzed regarding the used processing modes and introduced
stringers to prove the utilization of the mechanism.

Another observation is the reduction of stringers, earli-
ness and tardiness with certain weight ratios. Since this only
occurred with more equal earliness and tardiness weights
of 35 % and 50 %, it could indicate that the minimization
of multiple objectives benefits from more equal weights be-
tween them. But since it did not happen in the instance with
a stringer weight of 35 % with Basecase UC in figure 19, it
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Figure 19: Trade-off between earliness and tardiness in minutes and its effect on the stringer use with different stringer and due date
deviation weights in the second extended model.
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Figure 20: Trade-off between earliness and tardiness in minutes and its effect on the stringer use with a stringer and due date deviation
weight of 35 % and 65 %, respectively, in the second extended model with a Ver y high UC.

could also be a random occurrence. This concludes the nu-
merical studies, which will be followed by a brief summary
of the results and their interpretations, as well as an outlook
for future research and managerial insights.

5. Concluding remarks

5.1. Summary
Section 4.2 presented and discussed different aspects of

solutions yielded by the Gurobi solver, as well as parameters
that affected the scheduling of parallel heterogeneous CALs.
This section will summarize the most important findings of
this numerical study.
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As observed in figure 2, the data density decreased with
increasing instance sizes due to a surge of optimizations that
had to be terminated without a feasible solution because of
the implemented time limit. This diminished the ability to
determine trends that involve higher instance sizes due to
the mentioned selectivity effect, which affected the validity
of the data. The tuning of the solver decreased the number
of unsuccessful optimizations by almost 20 % while having
no effect on the number of introduced stringers or delayed
coils. It was, however, observed in figure 4, that the number
of stringers per coil negatively correlates with the number of
coils, which was explained by the higher probability of com-
patibility of coils with a greater instance size. Additionally,
higher scheduling flexibility through higher service levels en-
abled solutions with fewer stringers, while also decreasing
their total optimization time and MIPGap. Figure 6 displayed
the surge of the total optimization time due to the increasing
size and complexity of the model, as well as a slight increase
through the tuning of the solver. A positive correlation be-
tween the MIPGap and the instance size was portrayed in 7,
which was explained by the increasing number of termina-
tions due to the time limit. It was also argued that a higher
MIPGap does not necessarily indicate a less optimal solution,
but primarily a deficiency in solving time. This deficiency was
depicted in figure 8, as well as the substantial differences be-
tween different seeds, in terms of solving time. For the rest
of the numerical study, the instance size of 40 coils in combi-
nation with the tuned solver was chosen due to their optimal
trade-off between data density and the number of coils.

The results from the Best- and Worst-cases utilized in the
second part of the numerical study, displayed in figures 9 to
12, were as expected. It was observed, that the parameteri-
zations had a profound impact on the number of successful
runs, stringer use and tardiness, as well as on the solving
time. While optimizations with the Best-case and Ver y high
PF were able to schedule all coils without any stringers, none
of the optimizations with the Worst-case and Ver y high HC
yielded any feasible solution. By altering the PF and HC re-
spectively, the impacts could be mitigated, and it was found
that both factors greatly influence the results of optimiza-
tions. An additional test proved that the impact of the HC
on the solution is greater than that of the PF, at least for the
used definitions of these factors.

In contrast, the impact of altering the number of process-
ing lines on the stringer use was minimal. It was argued, that
if no stringers have to be added to comply with the service
level, the maximum absolute change in stringer use is one. In
fact, the number of introduced stringers did not increase or
decrease further for most optimizations through the removal
or addition of a processing line, respectively, as depicted in
figure 13. But it was observed in figure 14 that it did severely
impact the solving times due to the reduction or extension of
the model, respectively.

Another severe influence was observed in figure 16 by
drastically increasing the UC. A negative correlation between
the earliness of due dates and the number of introduced
stringers and delayed coils was found, but most optimiza-

tions were not successful. The main reason was the drasti-
cally increasing share of infeasible models. But the data also
portrayed the fact, that most models could still yield feasi-
ble solutions even with extremely early due dates, if they are
provided with a higher service level and time limit.

By removing the service level and integrating the tardi-
ness in the objective function, the first extended model was
able to yield results similar to the base model with a medium
service level. However, the former model had a higher UC,
as portrayed in figure 17. Additionally, an almost one-to-one
trade-off between the number of delayed coils and stringers
was observed with Ver y high UC. Figure 18 also indicated
that the minimization of stringer use might be more com-
plex than the minimization of tardiness through higher solv-
ing times with higher stringer weights.

With the introduction of earliness into the minimization
objective, the trade-off between stringer use, tardiness, and
earliness was displayed in figure 19 with the second extended
model. The observations suggested that the minimization of
earliness is more difficult than the minimization of tardiness
and that it also correlates with a higher stringer use.

Furthermore, both extended models had significantly
higher solving times than the base model, suggesting a higher
complexity of the optimization process. In contrast, how-
ever, they also had a lower failure rate of zero %, indicating
a negative impact of the service level on the optimizations
conducted with the base model.

5.2. Outlook, further research and managerial insights
Each of the 1180 optimizations was conducted on a regu-

lar household computer. With more sophisticated hardware,
much greater instance sizes could be solved while it would
also increase the performance of each optimization already
studied in this work. This could further be improved by
the implementation of heuristics, as described in section 2.2
and allow for a higher number of runs per parameterization,
thus improving the validity of the data. Additionally, a test
could be conducted which combines the addition of process-
ing lines with extremely early due dates. This should de-
crease the processing load per line and should therefore in-
crease the feasibility of the optimizations and the optimality
of the observed solutions. This test could also be conducted
with the second extended model since it should benefit the
earliness minimization and thus the stringer use. Moreover,
the necessary solving time and quality of the resulting solu-
tion of optimizations with case 25 % from the third part of
the numerical study could be determined.

But even without better hardware, the solver could be
more fine-tuned to increase performance further. Moreover,
the studies conducted on the base model during this numeri-
cal study could be applied to the extended models to investi-
gate, if the results differ from each other and if so, why. Fur-
ther extensions of the model are also possible. As an exam-
ple, the release dates or due dates could be replaced with the
entire upstream or downstream process, respectively. This
would be one step further to scheduling the whole steel pro-
cessing complex. Another study could try to investigate the
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cause of the high differences between different seeds. Possi-
ble explanations could be either the different distributions of
coil characteristics, due dates etc. or the randomness of the
Gurobi solver if provided with different parameterizations.56

Furthermore, the processing load of each processing line in
different scenarios could be studied, which could have some
implications for real-world applications. But some manage-
rial insights can already be derived from the observations
made in this study.

The impacts of the Worst- and Best-case scenarios should
be considered when scheduling CALs. It is difficult to estab-
lish the Best-case in real-world scenarios because most fac-
tors are determined by the customer order and the manu-
facturer may not be able to influence them. But the Best-
case should be established to the highest degree possible to
minimize the incurring costs. Due to the decreasing relative
number of stringers, it could also be advantageous to include
as many coils in a schedule as possible, but it is not clear
how this trend behaves with higher coil numbers. In con-
trast, the model building time increases disproportionately
with the addition of more coils, which could pose a problem
if optimization time is limited. Thus, it could be beneficial to
organize all coils in smaller, homogeneous batches and put
them in an order that minimizes the differences between each
batch. Afterwards, each batch could be optimized individu-
ally, with the last coil on each line of the preceding batch pos-
ing as the first coil on that particular line for the succeeding
batch. This could increase stringer use, but would also de-
crease the total optimization time. Thus, the costs of the ad-
ditional optimization time would have to outweigh the pos-
sible costs caused by the introduction of additional stringers,
which could be the case in situations with severely limited
available computation time or low stringer cost, or both.

Furthermore, the data indicates that by minimizing both
tardiness and stringer use, more optimal schedules could be
found, which leads to the final managerial insights. The real-
world applicability of the base model may be limited due to
the consideration of only the number of delayed coils. While
it is important how many coils are delayed, it is also impor-
tant how long they are delayed. Since the longevity of the de-
lay is not to be minimized in the base model, some coils could
be delayed by an, for the customer, unacceptable amount of
time. Hence, the second extended model may be more suit-
able for the scheduling of CALs. But it is also only a determin-
istic model. A deterministic model must be used complemen-
tarily with a dynamic model to account for random events
since these naturally occur during operations. In addition, a
CFM should be used to improve planning and efficiency over
several periods, thus minimizing operational costs over the
long term.57

Hence, the model and its different variants hold many
possibilities for further research, which could result in more
managerial insights as well as contribute to the development

56 Miltenberger, 2023b
57 Iannino et al., 2021, p. 620-630

of a more refined model that could be implemented by a man-
ufacturer to optimize the annealing process on continuous
annealing lines.
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