
Junior Management Science 10(3) (2025) 748-780

Junior Management Science

www.jums.academy
ISSN: 2942-1861

Editor:
DOMINIK VAN AAKEN

Advisory Editorial Board:
FREDERIK AHLEMANN

JAN-PHILIPP AHRENS
THOMAS BAHLINGER
MARKUS BECKMANN

SULEIKA BORT
ROLF BRÜHL

KATRIN BURMEISTER-LAMP
CATHERINE CLEOPHAS

NILS CRASSELT
BENEDIKT DOWNAR

KERSTIN FEHRE
MATTHIAS FINK

DAVID FLORYSIAK
GUNTHER FRIEDL

MARTIN FRIESL
FRANZ FUERST

WOLFGANG GÜTTEL
NINA KATRIN HANSEN

ANNE KATARINA HEIDER
CHRISTIAN HOFMANN

SVEN HÖRNER
STEPHAN KAISER

NADINE KAMMERLANDER
ALFRED KIESER

ALEKSANDRA KLEIN
NATALIA KLIEWER

DODO ZU KNYPHAUSEN-AUFSESS
SABINE T. KÖSZEGI

ARJAN KOZICA
CHRISTIAN KOZIOL

MARTIN KREEB
WERNER KUNZ

HANS-ULRICH KÜPPER
MICHAEL MEYER

JÜRGEN MÜHLBACHER
GORDON MÜLLER-SEITZ

J. PETER MURMANN
ANDREAS OSTERMAIER

BURKHARD PEDELL
ARTHUR POSCH

MARCEL PROKOPCZUK
TANJA RABL

SASCHA RAITHEL
NICOLE RATZINGER-SAKEL

ASTRID REICHEL
KATJA ROST

THOMAS RUSSACK
FLORIAN SAHLING
MARKO SARSTEDT

ANDREAS G. SCHERER
STEFAN SCHMID

UTE SCHMIEL
CHRISTIAN SCHMITZ
MARTIN SCHNEIDER

MARKUS SCHOLZ
LARS SCHWEIZER

DAVID SEIDL
THORSTEN SELLHORN

STEFAN SEURING
VIOLETTA SPLITTER

ANDREAS SUCHANEK
TILL TALAULICAR

ANN TANK
ANJA TUSCHKE
MATTHIAS UHL

CHRISTINE VALLASTER
PATRICK VELTE

CHRISTIAN VÖGTLIN
BARBARA E. WEISSENBERGER

ISABELL M. WELPE
HANNES WINNER
THOMAS WRONA

THOMAS ZWICK

Volume 10, Issue 3, September 2025

JUNIOR 
MANAGEMENT 
SCIENCE
Johannes Witter, Predicting Stock Returns With Machine 

Learning: Global Versus Sector Models

Robin Roskosch, Beware of Bullshit – A Qualitative Study on 
Young Adults’ Sustainability Awareness of Online 
Services

Nadhilla Mazaya, Board Gender Diversity: Evidence From 
Indonesia

Alexander Sake, Value Creation Opportunities of Generative
AI – A Case Study

Justus Olbrich, The Effect of Changes in Internal Control
Systems on Audit Risk

Jan Oliver Horstmann, Mandatory ESG Disclosure and Firm 
Value – A Quantitative Analysis of the Effect of 
Directive 2014/95/EU on Firm Value

Meret Anna Gläser, Government Interventions During the 
COVID-19 Pandemic, Culture, and Corporate Cost 
Behaviour

Zewei Shi, Modeling the Impact of Emission Credit Systems on 
Automotive Product Portfolios: A Mathematical 
Analysis of Policy Effects in Europe, China, and the 
U.S. Under Different Demand Scenarios

Hagen Alexander Hönerloh, Numerical Studies for the
Scheduling of Continuous Annealing Lines

Lea Wedel, KPIs for Sustainability: Defining the Strategy for a
Sustainable Future in the Insurance Industry

561

582
 

609

631

657

677

715

748

781

810

Published by Junior Management Science e.V.
This is an Open Access article distributed under the terms of the CC-BY-4.0 
(Attribution 4.0 International). Open Access funding provided by ZBW.

ISSN: 2942-1861

Modeling the Impact of Emission Credit Systems on Automotive Product Portfolios:
A Mathematical Analysis of Policy Effects in Europe, China, and the U.S.
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Abstract

In the midst of the global climate crisis, governments worldwide have implemented a range of emission policies aimed at en-
couraging more production of the environmentally friendly vehicle. However, the exact impact of these policies on automakers’
production portfolios and profitability remains uncertain and challenging to anticipate. This paper presents a comprehensive
analysis of three major emission regulation policies enacted by the European Union (EU), China, and the United States (U.S.),
evaluating their influence on car manufacturers. Leveraging a mathematical model, this paper adopt the perspective of in-
dividual manufacturers seeking to maximize revenue, delving into the intricacies of these policies. Furthermore, this article
conduct sensitivity and factorial analyses to assess the impact of policy parameters. The findings reveal that all three major
emission policies contribute to an increase in the production of low-emission vehicles. However, China’s policy has the least
impact on manufacturers’ profits and relies more on market demand to reduce the average carbon fleet emissions compared
to the policies in the EU and the U.S. In conclusion, this paper underscores that different policy systems yield varying profit
outcomes for manufacturers, necessitating adjustments to production portfolios for sustained profitability and the significance
of mathematical models in aiding manufacturers’ understanding of evolving policies and making informed predictions in a
dynamic regulatory landscape.

Keywords: automotive production; green transition; international emission policies; regulatory impact; sustainability

1. Introduction

As modern industrialization surges forward, humanity
confronts the complex challenges of climate change. This
encompasses the onset of extreme weather patterns and el-
evated temperatures, both driven by the incessant release of
copious amounts of greenhouse gases into the atmosphere.
The excessive emissions of greenhouse gases, such as car-
bon dioxide (CO2) and methane (CH4), instigate the green-
house effect, culminating in the far-reaching issue of global

I would like to sincerely thank my supervisor, Maximilian Kolter for his
thoughtful guidance and support throughout my thesis. He not only
helped me approach the problem more effectively but also provided valu-
able feedback to improve the clarity and readability of my writing. I am
also grateful to Professor Kolish for providing the data and initial litera-
ture that laid the groundwork for my research.

warming. This phenomenon poses a threat to the existing
ecosystem, manifesting in disruptive weather patterns and
extreme climatic events (Yoro & Al., 2020). Notably, the pri-
mary source of CO2 emissions stems not only from industrial
production but also from vehicular exhaust (Huang et al.,
2015). Traditional vehicles predominantly powered by gaso-
line and diesel generate substantial CO2 emissions in day-
to-day usage. In response to this environmental challenge,
the electric vehicle concept emerges as a viable solution. By
utilizing electricity as the primary power source, electric ve-
hicles could reduce carbon emissions, positioning them as a
more eco-friendly alternative (Costa et al., 2021)

Currently, there are four main types of vehicles: Internal
Combustion Engine Vehicles (ICEV), Plug-in Hybrid Vehicles
(PHEV), Battery Electric Vehicles (BEV), and Fuel Cell Elec-
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tric Vehicles (ICEV) (Vacheva & Hinov, 2019). ICEV cars are
the most traditional, powered by gasoline and emitting a rel-
atively high amount of CO2. BEV and FCEV are pure electric
vehicles with zero carbon emissions, collectively referred to
as ZEV (Zero Emission Vehicles). The distinction between
these two vehicle types lies in their power sources: BEVs use
batteries charged with electricity, while FCEVs utilize bio-
fuels and hydrogen-powered fuel cells, which can also be
considered hydrogen-powered vehicles (Parikh et al., 2023).
PHEVs represent a middle ground, with lower carbon emis-
sions compared to ICEVs. They operate on a hybrid power
source, utilizing both electricity and petrol or gasoline simul-
taneously. These different vehicle types have significant vari-
ations in production costs and sales revenue, depending on
factors such as production year, type, and size (Lipman &
Delucchi, 2006).

The ZEV and PHEV vehicle types produce less CO2 with
lower tailpipe emissions, which can help mitigate the prob-
lem of global warming. However, despite the increasing pop-
ularity of electric and low-carbon emission vehicles, the cost
of new energy vehicles remains higher than traditional vehi-
cles, leading to lower profits for manufacturers (Cuenca et
al., 2000). Vehicle producers need to maintain market com-
petitiveness and prioritize profit and financial gains, mak-
ing it challenging to persuade them to prioritize the pro-
duction of less profitable but environmentally friendly vehi-
cles. To encourage manufacturers to reduce fleet emissions,
which represent the average amount of CO2 produced across
their production portfolio, various governments have intro-
duced policies and regulations. Different governments have
adopted unique approaches to establish country-specific poli-
cies (An et al., 2011). However, the precise effectiveness of
these policy systems on manufacturers’ production portfolios
remains unclear.

This article focuses on three primary markets: Europe,
China, and the USA, each with its own emission regulations.
In Europe, the emission policy is referred to as the Super
Credit Policy, in China, it is known as the Dual Credit Pol-
icy, and in the USA, it is named the US Credit Policy. Further
details about these regulations can be found in Section 3.4.

In this scenario, two stakeholders exist: the manufacturer
and the policymaker. For the manufacturer, they need to de-
termine quickly how different policies will affect their busi-
ness profit and make quick responses to the production port-
folio to ensure profitability. For the policymaker, they need to
balance the profit of the manufacturer and the carbon emis-
sion. As Dominioni and Faure (2022) shows, an imbalanced
policy can lead to either a loss of tax income or the limited
effectiveness of emission policies. Although the government
has spent a lot of time discussing the details of the policy
and understands that even small parameter changes can af-
fect policy effectiveness, evaluating the policy’s effect is com-
plex. Policies must precede market reactions, and past results
are unreliable predictors due to changing demand and pro-
duction situations. Once a policy is published, it is difficult
to withdraw. For manufacturers, regardless of how the pol-
icy performs, they need to understand how different policies

and changes in policy parameters will affect their production
portfolio and revenue to adjust their business strategy. Dif-
ferent countries have their own goals in setting up policies,
and it is essential for manufacturers to analyze how differ-
ent policies in different countries differ to differentiate their
production strategy and ensure better profitability.

Overall, this study aims to compare various emission poli-
cies and assess their impact on manufacturing portfolios for
producers across different parameter scenarios in a quantita-
tive manner. In this article, operations research methods are
used to simulate the effect of different policies based on real-
istic test instances. By constructing mixed-integer linear opti-
mization models for different policies and demand scenarios,
policymakers as well as vehicle manufacturers can have a de-
tailed quantitative view to assess policy effectiveness (Thies
et al., 2022). The data comes from large global vehicle man-
ufacturer, and the policy information is based on the current
policy setup as of 2023. Moreover, since the mathematical
model is flexible in changing parameters, the parameters and
data can be adjusted to reflect the current situation and make
more accurate predictions and analyses.

The remainder of this study is structured as follows: In
Section 2, I discuss the literature related to this topic on find-
ing out the emission policy impact. In Section 3, I present
the model with detailed formulation and parameters, along
with different models of the three emission policy systems
in Europe, China, and the US. In Section 4, I show how the
model is solved for different policy systems, with the main
discussion focusing on the Super Credit System in Europe.
In Section 5, I list out the test instances performed and the
structure of the design of the experiment in evaluating differ-
ent policy systems. In Sections 6, I present the final results,
including the detailed portfolio, as well as sensitivity and fac-
tor analysis for different demand scenarios and parameter
settings. Finally, in Section 7, I draw conclusions regarding
the different policy systems and provide an outlook for fur-
ther research.

2. Literature Review

Various approaches have been proposed to assess the ef-
fects of emission policies on car manufacturers, and they can
be classified into five primary categories. Empirical studies
and economic models rely on historical data and economic
principles to conduct analyses on a broad scale. Market sce-
nario models create hypothetical market conditions to eval-
uate policy impacts. A technology strategy model employs
mathematical modeling to assist manufacturers in making
decisions regarding the adoption of different vehicle mod-
els with various motive technologies. Simulation-based plan-
ning models use simulations to project long-term effects of
the policy regulation for the manufacturer. Individual vehicle
manufacturer mathematical models are tailored to specific
manufacturers for in-depth analysis with output of detailed
production plan and fleet emission trend.

In the category empirical studies and economic models,
with the empirical studies gather data on emissions, produc-
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tion, and market behavior to analyze the impact of emission
policies and the economic model use economic principles to
predict how policy changes may affect car manufacturers,
such as changes in costs, prices, and market demand. For
the empirical studies Bergek and Berggren (2014) reviewed
the empirical studies on environmental policy and found that
policy instruments play a crucial role in driving environmen-
tal innovation across sectors. Also, (Y. Wang et al., 2018)
analyzed compliance strategies of four different automakers
under dual-credit regulations, considering fuel economy and
NEV (New Energy Vehicle) production which includes the
ZEVs (Zero Emission Vehicles) and PHEVs (Plug-in Hybrid
Electric Vehicle), comparing their approaches and suggesting
cost-effective strategies with regulatory improvements.

Besides these empirical analyses, the economic model
and pricing model have been built up to analyze how the
policy would affect the vehicle manufacturer in a broad vi-
sion. (Moran et al., 2020) conducted micro-level studies
with a multi regional input-output economic model to an-
alyze the consumer-oriented policy and showed that these
policies would reduce carbon emissions by about 25%. Addi-
tionally, the government pricing model of dual-credit policy
published by (Yang et al., 2023), which compared with the
market pricing model, shows that the dual-credit policy ben-
efits energy saving and emission reduction in the transport
sector. Moreover, in the study by (Ma et al., 2021), a supply
chain model includes two stakeholders, the engine supplier
and automakers, to analyze the carbon emission policy effect
on the production of the ICEV and NEV vehicle. (Michalek
et al., 2005) also considered the impact of the competition
of other manufacturer in the paper and proposed mathemat-
ical models of engineering performance, consumer demand,
and manufacturing costs, combined with game theory for the
market segment. For these models, the trend could be ob-
served from the economic perspective, but it could be too
broad in scope that makes lack of some precision in explain-
ing some details in the impact of the emission policy on the
production plans of the individual manufacturer.

Besides the economic models, various market scenario
models have been used to analysis the impact of the emis-
sion policy on the manufacturer’s portfolio. These models
creating various hypothetical market scenarios including
the transportation sector and then evaluating how differ-
ent emission policies would impact car manufacturers under
these scenarios. For example, Thiel et al. (2016) used a
TIMES-based energy system model to examines the impact
of stricter EU CO2 car legislation on transport-related emis-
sions, Electric vehicle uptake, oil consumption, and energy
costs. This model is a modeling platform that consider factors
like energy production, costs, and environmental impact and
could helps make informed decisions about emission policies
and resources. Hill et al. (2018) provided three models of
PRIMES (global energy-economic model)-TREMOVE (trans-
portation policy), GEM-E3T (model with macroeconomic,
energy, and environmental policies) and the JRC DIONE
(model for assessing energy and environmental policies)
to analysis the overall market situation in considering en-

ergy, climate, transportation and the Europe emission policy.
These models all reach similar conclusion that the EU policy
are effective in reducing GHG(Greenhouse Gas) emissions.
The ALTER-MOTIVE modelling method also been conducted
by Ajanovic and Haas (2017) to integrate the energy system
and transportation showing that GHG emissions could be
reduced at least by 33% in a selected policy scenario. Other
than these pre-formed model, Ou et al. (2018) develops the
New Energy and Oil Consumption Credits Model to quantify
the impacts of this policy in scenario from 2016 to 2020 to
discuss the effect of the dual credit system in China on the
electric vehicle sales. While these scenario models are use-
ful for generating convincing results, they may oversimplify
market conditions and the behaviors of individual manu-
facturers. These models can assess the effects of emission
policies on a broad scale and from a market perspective,
but they may not provide a comprehensive understanding of
how individual car manufacturers would be impacted by or
respond to these policies.

Speak to make analysis from individual level, there are
some studies modeled the problem of individual car man-
ufacturers to find profit maximizing technology strategies
considering emission policies. S. Wang et al. (2018) build a
mixed-integer mathematical model with decision variables
representing various motor technologies in a technology
combination (TC) problem. This model is designed to de-
scribe an automaker’s decision-making process, and I utilize
a genetic algorithm to assess the impact of China’s dual credit
policy from 2020 to 2025. Moreover, Romejko and Nakano
(2017) increase the range of the motor technology path for
the vehicle projects and explores a more diverse range of
eight alternative fuel vehicles (AFVs), including EVs, FCVs,
CNG (Compressed Natural Gas) vehicles, and more, to pre-
dict an optimal AFV portfolio for achieving economic and
energy security goals. Moreover Zhu et al. (2022) proposed
a decision-making algorithm for automakers’ production
strategies under the dual-credit policy in China. This algo-
rithm reveals how automakers’ choices transition between
strategies based on thresholds and government targets. Fur-
thermore, other than changing between the constraints and
parameter, Kellner et al. (2021) also use multi-objective opti-
mization method analysis in the technology selection to find
the optimal power train technology portfolio. For these mod-
els, some individual level of the vehicle portfolio planning
has been performed. However, these models only provide
the outcome of which motor technology to initialize, with-
out offering information on the actual quantity produced
for different vehicle technology types. Consequently, they
do not offer a comprehensive view of the resulting average
fleet emission values or the detailed cost structure of vehicle
manufacturers and are not capable for providing a very clear
picture of the vehicle portfolio and the impact of emission
policy on these portfolios.

Simulation method is also a popular modeling method
to obtain vehicle portfolios. Kieckhäfer et al. (2012) at year
1970 used a hybrid market simulation approach for strategic
planning of automotive vehicle portfolios to predict power-
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train market shares across vehicle sizes based on portfolio
offerings, consumer behavior, and market conditions. Also
Kieckhäfer et al. (2009) creates a framework using system
dynamics and agent-based simulation to analyze the product
strategies which aid manufacturers in effective technology
introductions across vehicle classes while considering regu-
lations and markets. Moreover the NW (Newman and Watts)
’small world’ network model also been used by Hu et al.
(2020) to explore the dynamic effects of different policies on
the diffusion of electric vehicles. For these simulation model,
they could provide a close to reality output for the vehicle
portfolio result thus indicate the impacts of the emission pol-
icy, but the model would take long times to be solved. It
could be inefficient in time when implementing large number
of testing scenarios into those simulation model for getting
the solution insights.

Recently, Thies et al. (2022) proposed a novel model that
concentrates on the individual vehicle manufacturing portfo-
lio. This article analysis how the EU emission policy effects
the vehicle portfolio using optimization model from the per-
spective of an individual vehicle manufacturer. This model
has provided a detailed production portfolio, showing the op-
timal quantity of each vehicle type to be produced annually,
along with a comprehensive resource plan and accurate av-
erage fleet emissions for each year’s production and provide
a basic framework of the optimization model used in this ar-
ticle. In this article, the base model of Thies et al. (2022)
is extended by considering not only the EU policy but also
the other two major policy system in China and the US. Fur-
thermore, the EU policy is considered in more detail, as the
super credit relaxation is considered. This novel model offers
a more comprehensive and realistic analysis of policy effects
from the perspective of individual car manufacturers and can
be solved in few minutes. This model provides detailed in-
formation, including the vehicle initialization plan, produc-
tion quantity for each vehicle type in each year, average fleet
emissions in each year, market share of vehicle types, and
the detailed cost structure. Moreover, it allows for easy pa-
rameter adjustments to customize the results as the policy
changes.

3. Method

This section presents a mathematical model for project
portfolio planning considering different emission policies.
The overall road map for the model formulation is presented
in Section 3.1 and Section 3.2 explains all the parameter
information for the mathematical model. After that, a base
model without emission policies is presented in Section 3.3,
before it is extended by the emission policies for Europe,
China and the U.S. in Section 3.4.

3.1. Model Road Map
Figure 1 describes the roadmap for the optimization

model in this article. The planning horizon is 10 years, from
2025 to 2035, during which the manufacturer can change

its portfolio production decisions. For the period outside the
planning period, the settings remain fixed.

Within the planning horizon, the manufacturer can make
several decisions, with the primary one being the determi-
nation of production quantities (qvt) for each vehicle (v) in
each period (t). To ensure these production quantities, the
resource plan has also been established, which includes the
capacity (kr t) for each resource (r) in each period (t). Ad-
ditionally, the resource adjustment plan contains (kRampup

r t )
and (kRampdown

r t ), representing the required increase and de-
crease amounts for resource (r) in period (t). The objec-
tive function aims to maximize the Net Present Value (NPV)
for the entire production portfolio, which is discounted the
manufacturer’s profit obtained by subtracting all costs from
the revenues. Revenues encompass sales revenue generated
from vehicle sales throughout the planning period, as well
as end-of-period capacity cash-out income. Costs include
production expenses, which consist of both fixed and vari-
able costs related to vehicle production, expenses for increas-
ing or decreasing resources to maintain production capacity,
development costs for initializing new vehicle projects, and
penalty costs or gains dependent on the specific policy system
in place.

Several constraints bind the decision-making process for
vehicle production and can be categorized into five main cat-
egories. The vehicle project constraints help determine the
initialization of different vehicle projects each year and limit
the maximum number of projects that can be started. The
production resource constraints are used to ensure sufficient
resources are available for production. The vehicle demand
constraint is employed to prevent the sale of more vehicles
than the market demand, and the production volume con-
straint is used to ensure the minimum production volume
each year. The policy-related constraints in different policy
systems impose penalties or restrictions on the average fleet
emissions of the production portfolio.

The inputs for modeling the production process con-
straints are depicted in Figure 1. The vehicle projects in-
clude several pre-defined projects categorized by powertrain
technology type, size, production year, and power range
class. Some vehicle projects are already determined before
the planning horizon. Each vehicle project has its own pro-
duction cost, sales revenue, and tailpipe line emission value.
Development costs are assumed to be the same for all vehicle
projects, and the maximum life cycle is equal for all projects.
After 2025, within the planning period, the manufacturer
can initialize new vehicle projects if suitable.Each vehicle
project requires production resources. Before the planning
period, the current on-hand resources are pre-defined. The
manufacturer must ensure that resources can meet the pro-
duction quantity of vehicle projects, which includes decisions
on ramping up or down capacity. Resource costs include
fixed and variable costs, with the fixed cost per production
resource potentially decreasing due to economies of scale.
Sales quantities must not exceed the market demand for a
given year, segmented by vehicle type, size, and power range
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Figure 1: Optimization Model Road Map

(e.g., IC EV_medium_low). Multiple vehicle projects can be
considered for several years within a market demand seg-
ment, but each vehicle project is associated with only one
market segment. Quantities below market demand are as-
sumed to be sold, and any unfilled demand is considered to
be lost with no capacity payback. The general settings define
the framework for general parameters, such as the assumed
annual interest rate for NPV calculation, utilization loss due
to capacity increment, and the minimum production quantity
required to stay on the market, with full details described in
section 3.2.3.

In addition to the basic setup, one of the policies from Su-
per Credit Policy in Europe, Dual Credit Policy in China, US
Emission Policy in the United States, or no Policy should be
chosen to form the final policy-specific optimization model.
Each policy entails specific parameters and formulas to be
considered. The parameter values for different policies are
based on current research in 2023, combined with personal
assumptions, and all are related to the CO2 average fleet
emissions, as described in section 3.4.

Once these setups are incorporated into the model and
the model is solved, the final objective value becomes avail-

able, along with detailed values for revenues and various
cost sectors. Additionally, the fleet emissions for each vehicle
project (v) in each period (t) can be determined by multiply-
ing the carbon cycle emissions (Ev) by the quantity produced
(qvt) each year.

All details about the formulation of the optimization
model are presented in section 3.3.

3.2. Parameter Information for the Vehicle Project Portfolio
Planning

This section provides detailed parameter information, in-
cluding sets, indices, decision variables, and descriptions for
all parameters used in the model.

3.2.1. Sets & Indices
The model uses several sets and indices, which are de-

scribed in Table 1. These sets and indices are essential for
defining the parameters and decision variables in the model.

3.2.2. Decision Variables
There are 11 sets of decision variables described in Ta-

ble 2. Three of these variables are binary variables, while
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Table 1: Sets and Indices

Set & Indices

Set Index Description

V ν Vehicle projects

X ∈ V Vehicle project start before the
planning horizon

T t Periods

P ∈ T Periods in planning horizon

M m Market segments

R r Production Resources

E ∈ R Existing production resources
at the beginning of the
planning horizon

the rest are continuous variables. These decision variables
play a critical role in the model, enabling the optimization
of the vehicle portfolio and the assessment of various policy
impacts.

3.2.3. Parameters
Table 3 concludes all the parameters used for the mathe-

matical model, including the basic model as well as the ad-
ditional emission policy model and separated by categories.
The parameter contains type constant, variable, and vector.

3.3. Mathematical Formulation for the Base Model
This section describes the model for the base model with-

out the emission policy but provides an explanation of the
objective function and the constraints in the context of a pure
vehicle manufacturer setting.

3.3.1. Objective Function
For the objective function, the goal is to maximize the

net present value (NPV) of the vehicle project in ten years
period. The interest rate is assume to be 5%, and the mone-
tary value is calculated in each year and return the final NPV
value base on year 2025. The objective function consists of
three major parts which are the net profit of the production
portfolio, the development cost and capacity increment cost,
and finally the capacity cash back cost calculated and the end
of the production planning phase at year 2035.

For the net profit of each year in the planning period, it
adds up all sale revenue according to the production quantity
and minus the production variable cost as well as the fixed
cost, also the penalty cost due to the emission policy would
be deducted according to different policy types.

For the development cost and capacity increment cost al-
though the cost are spent on specific year in the production
planning period, but it is assumed that the payment does
not due immediately. The payment and deduction could be
evenly distributed in 7 years period with each year about
14.3% of the total cost paid. VectRD

vt is the parameter used

for calculate the distribution of the cost and could also be
counted after the production period. So the net NPV is sum-
mation for a all periods which is t ∈ T , from 2025 to 2050.

For the third part of the capacity back value, it is calcu-
lated at the end of the planning period at year 2035. This
term used to count back the capacity value to prevent the
model over estimated the cost for the last few years capacity
increase. For the capacity back cost, it is assumed that the re-
source on hand would retain it’s value in 10 years period and
for each year, the value would depreciate by 10%. For exam-
ple, for the resource in 2030, the resource would be capacity
back with the rest value of 50%.

Objective Function:

Maximize NPV with:

max NPV =
∑

t∈P

((T CSaleProd
t − T C ProdF ixed

t − T C Penal t y
t ) · drt)

−
∑

t∈T

((T CRD
t +T CCapaci t y

t )·drt)+TRCapaBack·drT max

(1)

with

T CSaleProd
t =
∑

v∈V

((sunit
v − cUnit var

v ) · qvt) (2)

T C ProdF ixed
t =
∑

r∈R

(cResource · kr t) (3)

T C Penal t y
t = cPenal t y

t (4)

T CRD
t =
∑

v∈V

(cRD
v · VectRD

vt · yv) (5)

T CCapaci t y
t =
∑

r∈R

∑

t∈P

(cRampU pF ixed · VectPC
τt · y

RampupBin
r t

+ cRampU pVar · VectPC
τt · k

Rampup
r t ) (6)

TRCapaBack =
∑

r∈R

zRestValue
r (7)

3.3.2. Constraints
From the baseline model, there are four categories of con-

straint sets listed below. The constraints for different emis-
sion policies are in Section 3.4.

For the vehicle projects constraints set, it consists of con-
straints related to vehicle project initialization. Constraint
(8) sets up the initial start for the vehicle project before 2025,
the planning horizon. Constraint (9) uses a big number M to
switch the binary variable for the start of the new vehicle
project. Constraint (10) limits the allowed start for the num-
ber of vehicle projects in every year due to resource limits,
and Constraint (11) forces the quantity produced to 0 if the
vehicle exceeds the project life cycle of tmax years.
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Table 2: Description of Decision Variables

Decision Variables

Variable Type Range Description

yv Binary {0,1} Vehicle project starting indicator with 1 meaning vehicle v is realized
and 0 otherwise

qvt Continuous R+ Number of vehicle project v produced at time period τ

kr t Continuous R+ Capacity of resource r in period t

kRampup
r t Continuous R+ Increase of production resources r at the beginning of period t

kRampdown
r t Continuous R+ Decrease of production resources r at the beginning of period t

yRampup
r t Binary {0,1} Resource increase indicator with 1 meaning there is an increase in

resource r at the beginning of period t, with 0 otherwise

zRestValue
r Continuous R+ Residence Value for resource r at the end of the planning horizon

cPenal t y
t Continuous R+ Penalty cost paid for the excess CO2 Emission in period t

P relax
t Continuous R+ Super credit policy relaxed percentage

y1 Binary {0,1} Binary variable used to form maximum or minimum constraint

DDual
t Continuous R+ Cost paid(+) or Revenue earned (-) for dual credit policy

For the production resource constraints, Constraint (12)
describes the resource usage constraint, and Constraint (13)
indicates that in the ramp-up period, the resource would only
be available at θmax percentage. Constraint (14) adjusts the
on-hand resource at each year of the planning period after
the previous ramp-up and ramp-down decisions that would
be made. Constraint (15) switches on the fixed cost for ramp-
ing up the capacity. Constraint (16) calculates the rest value
of the on-hand resources at the end of the planning year
2035, with V res representing the remaining value, estimated
as 5% of the total cost paid for increasing this amount of re-
source.

Constraint (17) is the vehicle demand constraint to en-
sure that the production volume, which is less than the de-
mand, would be sold to earn profit. Constraint (18) guar-
antees the minimum production volume in each year in the
planning period.

Vehicle Projects

yv = y ini t ial
v ∀v ∈ X (8)

qvt ≤ M · yv ∀v ∈ X ,∀t ∈ P (9)

∑

v∈V :SOPv=t

yv ≤ SOPmax ∀t ∈ P (10)

qvt = 0 ∀v ∈ V,∀t ∈ T : t ≤ SOPv

∨ t ≥ SOPv + tmax (11)

Production resources

∑

v∈V :rv=R

qvt ≤ kr t ∀r ∈ R,∀t ∈ P (12)

∑

v∈V :rv=R

qvt ≤ θmax · kr t

∀r ∈ R,∀t ∈ P : t = tRampup
r (13)

kr t = kini t ial
r +
∑

τ∈P:τ≤t

(kRampup
rτ − kRampdown

rτ )

∀r ∈ R,∀t ∈ P (14)

kRampup
r t ≤ M · yRampup

r t ∀r ∈ R,∀t ∈ P (15)

zRestValue
r ≤ V res ·

∑

t∈U

((yRampup
r t · cRampU pF ixed)

+ (cRampU pVar · kRampU p
r t )) ∀r ∈ R (16)

Vehicle Demand

∑

v∈V :mv=m

qvt ≤ dmt ∀m ∈ M ,∀t ∈ P (17)

Production volume

∑

v∈V

qvt ≥ qmin ∀t ∈ P (18)
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Table 3: Detailed Parameter Information

Parameter

Parameter
Category

Parameter Type Description

Vehicle Projects SOPv Vector Start of production time for vehicle project v

cUnit var
v Constant Unit variable cost for vehicle project v

sUnit
v Constant Unit sale revenue for vehicle project v

Ev Vector CO2 cycle emission of vehicle project v

mv Vector Market segment type of vehicle project v

rv Vector Resource type needed for vehicle project v

tmax Constant Maximum duration of the selling time period

VectRD
vt Vector Distribution of cash flow: Percentage of total development cost for vehicle

project v in period t

cRD
v Constant Development cost for a new vehicle model

y ini t ial
v Vector Preset vehicle realization indicator for vehicle project v

Production
Resource

cRampU pF ixed Constant Fixed cost for ramping up production resources

cRampU pVar Constant Unit variable cost for the production resources

tRampup
r Vector Ramp-up period for production resource r

Vect PC
tcur trampup

Vector Distribution of cash flow: Percentage of total production cost for ramp-up
period tcur distributed in current period t rampup

cResource Constant Constant cost for each unit of production resource on hand

kini t ial
r Vector Capacity of production resource r before the planning horizon

V res Constant Residence value for production resource at the end of planning horizon

Demand
dmt Vector Number of vehicles demanded in market segment m at period t

Pmin Constant Minimum percentage of total demand needed to be fulfilled

Emission
Regulation

E Law
t Constant Total CO2 fleet emission threshold in period t

σlow Constant The maximum fleet emission value for the category of low emission vehicles
in the super credit policy system

γmutipl ier Constant PHEV multiplier factor in super credit policy system

ERelax Law
t Variable Relaxed threshold for total CO2 fleet emission in period t

P EV thres
t Variable The regulated electric vehicle percentage to meet the relaxation criteria in

period t

PSuperMax Constant Maximum allowance for relaxation in Super Credit System

cCO2 Constant Unit penalty payment cost per g/km for each vehicle sold

SCAFC
t Variable Total standard CAFC credit provided in period t

ACAFC
t Variable Actual CAFC credit consumed in period t

SFC
vt Variable Fuel consumption standard for vehicle project v in period t

AFC
vt Variable Actual fuel consumption for vehicle project v in period t

W FC
v Variable Weight factor for low emission vehicle project v in CAFC credit

SN EV
t Variable Total standard NEV credit for new energy vehicles required in period t

AN EV
t Variable Actual NEV credit gained for new energy vehicles in period t

kv Variable Weighted NEV credit ratio factor for vehicle project v

Rt Variable Target ratio in period t discounted for NEV credit

C Dual Constant Monetary value for one dual credit in dual policy system



Z. Shi / Junior Management Science 10(3) (2025) 748-780756

Table 3 — continued

Parameter

Parameter
Category

Parameter Type Description

Other
Parameters

i Constant Assumed interest rate

drt Vector Discount rate at period t

qmin Constant Minimum production number required in each period

θmax Constant Maximum utilization of production resources in the ramp-up period

SOPmax Constant Maximum number of vehicle project initializations in each period

Others M Constant Large number used for modeling

T max Constant Last period in the planning horizon T

3.4. Mathematical formulation for Different Policy Systems
This section explains the three major emission policy

models: the Super Credit System in Europe, the Dual Credit
Policy in China, and the Emission Policy in the US.

3.4.1. Super Credit System in Europe
For the Super Credit System, the EU government has set

a target tailpipe emission threshold to measure the average
carbon emission each year. Furthermore, in Europe, there
are not only simple penalty regulations for carbon emissions
for vehicle manufacturers. Beginning in 2025, the EU Com-
mission announced a Super Credit System on top of the CO2
emission regulations. In simple terms, car producers can gain
more CO2 threshold reductions when they produce more low
carbon emission vehicles. The definition of low carbon emis-
sion is when the CO2 emissions of the car are lower than
50 g/km. With this Super Credit System, vehicle manufac-
turers would be more incentive to produce low or non-carbon
emission vehicles since they would gain more CO2 emission
allowances or incur fewer penalty costs from a larger produc-
tion of low carbon emission vehicles.

In the Super Credit System in Europe, the government
calculates the percentage of low carbon emission cars in the
whole car production portfolio. When the percentage of low
carbon emission vehicles is calculated, the relaxed threshold
can also be calculated. This threshold is relaxed as a per-
centage on top of the current year’s CO2 emission thresh-
old. To calculate the percentage of the relaxed threshold, the
percentage of the low carbon emission portfolio should first
be compared to the regulated percentage set for low carbon
emission vehicles for each year.

Mathematical Formulation for Super Credit System in Europe

The detailed model is listed below. Equation (19), with
the help of Equations (20) and (21 3.21), represents the cal-
culation of the relaxed threshold based on the production
portfolio. Equations (20) and (21) set a lower limit with
the help of the big number M , and Equation (22) sets the
upper limit. Afterwards, the following equation incorporates

the relaxed threshold percentage into the emission portfo-
lio. This model will be further linearized for solving, and a
detailed description of the linearized model can be found in
Section 4.

∑

v∈{V :Ev≤σlow}
(qvt · (1−

γmutipl ier

σlow
· Ev))

∑

v∈V qvt
≥

P relax
t + PEV thres

t −M · (1− y1) ∀t ∈ P (19)

P relax
t ≥ −M · y1 ∀t ∈ P (20)

P relax
t ≤ M · y1 ∀t ∈ P (21)

P relax
t ≤ PSuperMax ∀t ∈ P (22)

E law
t · (1+ P relax

t )≥ ERelax law
t ∀t ∈ P (23)

∑

v∈V

(Ev · qvt)≤ ERelax law
t · (1+ θ ) ·

∑

v∈V

qvt

∀t ∈ P (24)

zpenal t y
t ≥ (
∑

v∈V

(Ev · qvt)− ERelax law
t ·
∑

v∈V

qvt) · cCO2

∀t ∈ P (25)

zpenal t y
t ≥ 0 ∀t ∈ P (26)

3.4.2. Dual Credit System in China
In China, the policy for encouraging the production of

low-carbon emission vehicles differs from that in the EU. It is
a dual-sided policy. Instead of setting a threshold with some
relaxation criteria, the Chinese government has established
a credit system for CO2 emissions. For a car production com-
pany, two different credit scores are calculated: Corporate
Average Fuel Consumption (CAFC) and New Energy Vehicle
(NEV) credits.
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The CAFC credit score is more focused on the fuel con-
sumption of the car portfolio, with a higher score for compa-
nies producing more traditional cars. The CAFC score has a
target score calculated based on the current number of fuel
consumption cars produced, as described in Equation (28).
The coefficient is based on the size of the car and is calculated
according to the vehicle’s weight. The actual CAFC score is
calculated based on the actual fuel consumption of the vehi-
cle type, divided by a weighted factor based on the vehicle’s
powertrain technology type, as described in Equation (3.29).
The final CAFC score is the difference between the standard
CAFC score and the actual CAFC score.

For the NEV credit score, there is also a target score and
actual score calculation, but the focus is on low-emission ve-
hicles. The target score, which is also the standard NEV score,
is calculated based on the quantity of ICEV cars with a coeffi-
cient of the target ratio for each year, as described in Equation
(32). The actual NEV score is calculated based on the num-
ber of low carbon emission vehicles (PHEV, BEV, and FCEV)
produced, with different coefficients for different types of ve-
hicles, as described in Equation (31). Based on the policy reg-
ulated in 2020, the coefficients vary according to the model
of the low carbon emission vehicle based on factors such as
electric range multiplier (ER), battery energy density multi-
plier (BD), electric energy consumption multiplier (EC), and
rated power multiplier (RP).

Once both the CAFC and NEV scores are obtained, the
Chinese government requires car manufacturers to balance
the two scores, which can be freely traded with banks or other
companies. The modeling process for this exchange is com-
plicated, so this model uses a monetary value to simulate the
market exchange process. This means that car manufactur-
ers could gain money as profit with more NEV credit scores
earned and lose money with more CAFC scores.

Mathematical Formulation for Dual Policy in China

In this scenario, no additional constraints are required.
However, for the objective function, the penalty cost would
be replaced by the dual credit score, which consists of a CAFC
credit score and a NEV credit score. The sum of these two
scores would contribute to the final objective function, with
a positive value indicating capital gain and a negative value
representing a penalty cost. The monetary value of the score
is based on the market price, but for simplicity in this model,
the price of the score is assumed to be constant, based on past
average values. This factor will be further discussed later.

CAFC SCORE

CAFCt = SCAFC
t − ACAFC

t ∀t ∈ P (27)

with

SCAFC
t =
∑

v∈V

(SFC
vt ∗ qvt) ∀t ∈ P (28)

ACAFC
t =
∑

v∈V

(
AFC

vt

W FC
v

∗ qvt) ∀t ∈ P (29)

NEV SCORE

N EVt = AN EV
t − SN EV

t ∀t ∈ P (30)

with

AN EV
t =
∑

v∈V :[BEV,PHEV,FCV ]

(kv ∗ qvt) ∀t ∈ P (31)

SN EV
t =
∑

v∈V :[IC EV ]

(Rt ∗ qvt) ∀t ∈ P (32)

FINAL DUAL CREDIT SCORE

DDual
t = (CAFCt − N EVt) ∗ C DualC redi t ∀t ∈ P (33)

3.4.3. Credit System in US
In the United States, although there exists a CO2 credit

system, it is important to note that this system is only in place
in the state of California. In the rest of the United States,
there are federal vehicle emissions standards that car manu-
facturers must adhere to. These federal standards require car
producers to ensure that their vehicle manufacturing portfo-
lio strictly follows the restrictions for the average CO 2 emis-
sion of the fleet.

Mathematical Formulation for Emission Regulation in US

Under the U.S. emission law, an additional constraint
(34) needs to be added to ensure that the carbon emissions
for each year’s production portfolio are strictly below the av-
erage emission standard set.

∑

v∈V

(Ev ∗ qvt)≤ E law
t ∗
∑

v∈V

qvt ∀t ∈ P (34)

4. Solution approach

This section present the solution approach for solving the
optimization model. For the Chinese and US credit systems
the optimization model is a mixed-integer linear program,
which can be solved directly by a commercial solver. How-
ever, the EU credit system requires the non-linear constraints
in equation (19), (24) and (25). Hence, to solve the model it
must be linearized first. The proposed linearization approach
is detailed in the following.
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4.1. Linearization Approach
The original model for the super credit system in Eu-

rope introduces several non-linear constraints to the origi-
nal model, making it unsolvable by standard solvers. The
primary issue arises from the presence of the decision vari-
able qvt in both the numerator and denominator of constraint
(19) in the original problem. Furthermore, constraints (24)
and (25) involve the multiplication of the decision variable
ERelax law

t by qvt . To solve this model, we need to transform
the decision variable qvt .

Using traditional methods, such as introducing new bi-
nary variables or using precewise linear function to replace
the decision variable qvt proves to be too complex for lin-
earizing the model. This complexity arises because the de-
cision variable qvt appears in numerous instances through-
out the model. Moreover, the decision variable qvt exhibits a
high degree of flexibility in terms of its range and value, as
more than 120 decision variables must be determined over
a 10 -year period. Achieving an optimal solution using con-
ventional techniques would demand a significant amount of
computational time. Since the primary goal of this paper is
not to attain optimality, this paper employs an estimation ap-
proach instead. This approach allows me to find a heuristic
solution that closely approximates the optimal solution, pro-
viding a practical resolution to the problem.

The approach functions in the following manner. Initially,
I address the optimization problem without incorporating the
relaxed policy, which solely consists of a threshold for fleet
emissions and associated penalty costs. Subsequently, I rein-
troduce the relaxation aspect into the solution obtained in
the previous step, thereby generating a heuristic solution for
the European super-credit system. By utilizing this estima-
tion approach, I can navigate the complexities introduced by
the super credit system model and make informed decisions
that align with the overarching objectives of the study. De-
tailed justification and implementation of this solution are
presented in the following.

4.1.1. Mathematical Formula of the Linearized Model
In this linearized model, constraint (19) is redefined and

substituted with constraint (35). The variable qvt in the de-
nominator is replaced with Pmin∗

∑

m∈M dmt , where Pmin is an
adjustable parameter used to estimate the total production
volume. Additionally, constraint (42) is introduced to ensure
that the total production volume exceeds the estimated pro-
duction quantity in the planning period after 2025, as the
capacity is fixed starting from the year 2025 and cannot be
altered. The replacement of the decision variable qvt also ap-
plies to constraints (24) and (25), which are replaced by con-
straints (40) and (41). Through this approach, qvt is trans-
formed into a parameter that can be adjusted using Pmin,
making the problem solvable for the purpose of testing the
results. The detailed formulation of the model is described
below.

∑

v∈{V :Ev≤σlow}
(qvt × (1−

γmutipl ier

σlow
× Ev))

Pmin ·
∑

m∈M dmt
≥

P relax
t + PEV thres

t −M · (1− y1) ∀t ∈ P (35)

P relax
t ≥ −M · y1 ∀t ∈ P (36)

P relax
t ≤ M · y1 ∀t ∈ P (37)

P relax
t ≤ PSuperMax ∀t ∈ P (38)

E law
t × (1+ P relax

t )≥ ERelax law
t ∀t ∈ P (39)

∑

v∈V

(Ev · qvt)≤ ERelax law
t · (1+ θ ) · Pmin ·

∑

m∈M

dmt

∀t ∈ P (40)

zpenal t y
t ≥ (
∑

v∈V

(Ev ·qvt)− ERelax law
t · Pmin ·
∑

m∈M

dmt) · cCO2

∀t ∈ P (41)

∑

v∈V

qvt ≥ Pmin ·
∑

m∈M

dmt ∀t ∈ P2025 (42)

zpenal t y
t ≥ 0 ∀t ∈ P (43)

4.1.2. Evaluating the Quality of the Approximation
By performing this replacement, the objective function

becomes prone to overestimation, as the new variable Pmin ∗
∑

m∈M dmt will always be smaller than the actual production
quantity qvt . The parameter Pmin is constrained not to fall be-
low 70% because it is essential to maintain a reasonable pro-
duction volume, and excessively low production quantities
are impractical. The gap between the overestimated result
and the real result can be analyzed and compared in order to
search for a heuristic solution that closely approximates the
optimal solution. If the estimation leads to a local minimum
with a lower gap and a high objective value, it suggests that
the optimal solution might fall within this production quan-
tity range.

For the gap analysis, Pmin is tested within a range from
70% to 100%, with intervals of 5%. The model is initially
solved by setting the Pmin value to obtain the real produc-
tion quantity. Subsequently, the actual production quantity
is reintroduced into the original problem to calculate the ac-
tual NPV value. Both results are collected and recorded for
further analysis.

The observed gap is approximately 2%, and it shows rel-
atively little fluctuation. Additionally, a peak objective result
is observed at the point where the Pmin value is set to 90%
with the lowest gap. Detailed graphical representation can be
found in Appendix (see Figure A.1). Based on these results,
it is reasonable to assume that the optimal solution may fall
within this range, but a more precise estimation is required.
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For this refined estimation, the testing range is narrowed to
90% to 100% but with a higher interval frequency of 1%.

A detailed graph has been generated, and according to
this graph (see Figure A.2), 91% is the estimated point with
the highest objective value and the lowest gap. However,
using this estimation method, the quantity produced in each
year of the planning period is nearly identical, making it chal-
lenging to perform tests to find the exact optimal solution.
To interpret the 91% estimation, a relaxed model including
the Europe emission policy but excluding the Super credit
relaxation needs to be established. For this model, the con-
straint of the super credit policy is excluded, and the addi-
tional emission related constraints used is described below
with only the fleet emission threshold along with the penalty
cost.

∑

v∈V

(Ev · qvt)≤ E law
t · (1+ θ ) ·
∑

v∈V

qvt ∀t ∈ P (44)

zpenal t y
t ≥ (
∑

v∈V

(Ev · qvt)− E law
t ·
∑

v∈V

qvt) · cCO2

∀t ∈ P (45)

zpenal t y
t ≥ 0 ∀t ∈ P (46)

This linear model can be solved, and the results indicate
that the optimal average output production quantity over
a ten-year production horizon is also around 91%, which
closely aligns with the estimated Pmin value. Furthermore,
when the credit relaxation is applied back to the resulting
production quantities, the objective value increases by ap-
proximately 2% with a higher net NPV value. These results
suggest that this revised model, excluding the super credit re-
laxation, could serve as a starting point for calculating a sat-
isfactory heuristic solution. To assess the reliability of these
results, the same analysis is repeated for a different demand
scenario, assuming that the market is more innovative and
people are more receptive to low carbon emission vehicles.
The detailed result graphs are provided in Appendix A. 3 and
A. 4.

The results show that the production quantity at approx-
imately 86% corresponds to the highest objective value and
the lowest result gap, with a difference of about 1.67%. For
the revised model without the super credit relaxation, the op-
timal production quantity is around 84%, which is also close
to the estimated result. It also yields the highest objective
value, at a level of approximately 2% higher than the esti-
mated result.

4.1.3. Approximation Approach used for Experiments
In conclusion, the revised model, which excludes the su-

per credit relaxation, has undergone testing for reliability and
sensitivity by varying the production quantity within a range
of -5% to 5% in both conservative and innovative demand
scenarios. Subsequently, the super credit relaxation policy
was reintroduced to obtain the final results. The detailed

graphs in the Appendix (see Graph A. 5 and A.6) demon-
strate that this revised model consistently yields the largest
objective value locally.

As a result, it can be concluded that solving the super
credit system model can be performed in two phases. First,
utilize the model without the relaxation policy as the initial
estimation. Then, reintroduce the relaxation policy to obtain
the final heuristic result. While this result may not be opti-
mal, it is sufficiently close to the optimal solution for further
analysis.

5. Design of Experiment

This section outlines the experimental design for the com-
putational study of the different emission policy model. In
Section 5.1, the foundational data for modeling the system
under distinct policy frameworks is introduced. Sections 5.2
and 5.3 detail the procedures used to analyze the the impact
of the different policies and their parameters.

5.1. Test Instances
First, in Section 5.1.1, I present a detailed description

of the data and specifications for the base model. This base
model excludes the effects of the emission policy system and
provides specific numerical values for various parameters
based on personal assumptions and research. Second, in
Section 5.1.2, I provide specific numerical values for differ-
ent parameters within various emission policies in Europe,
China, and the U.S.

5.1.1. Test Instances for the Base Model
The data originates from a passenger car manufacturing

company in Europe. It is derived from publicly available data
sets with same source used in the Thiel et al. (2016) paper,
supplemented with certain assumptions and settings based
on personal research.

Vehicle Projects

A total of 264 vehicle projects have been defined spanning
from the year 2025 to 2035. These vehicle types are cate-
gorized based on powertrain technology (ICEV, PHEV, FCEV,
BEV). Furthermore, within each powertrain technology cat-
egory, they are further classified by power range, including
’small,’ ’medium,’ and ’large,’ as well as discrete power lev-
els, denoted as ’high’ or ’low.’ It’s important to note that
FCEV and BEV vehicles are considered zero-emission vehi-
cles, while PHEVs are classified as low-emission vehicles. Ad-
ditionally, for ICEV vehicle types, it is assumed that advance-
ments in technology will lead to a reduction in their pipeline
emissions, as is the case for PHEVs. Conversely, it is assumed
that variable production costs for ICEVs and PHEVs will in-
crease in the future.

The sale revenue for each vehicle project varies depend-
ing on the year, size, and powertrain technology, falling
within a range of =C 8,400 to =C 28,000. Furthermore, each
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vehicle project is assumed to have a life cycle of seven years.
The development cost for each vehicle project is assumed to
be uniform and approximately =C 420 million. More detailed
information can be found in the Data Information Excel File.

Production Resources

For different discrete power levels (’high’ or ’low’), the
same set of resources can be utilized. In terms of production
resources, the capacity required to meet the production plan
can be increased annually. However, increasing capacity en-
tails a fixed cost of =C20 million, and each incremental unit of
capacity incurs a variable cost of =C 2.75 as part of the ramp-
up process. It’s important to note that during the rampup
period, only 75 % of the total capacity for that year can be
effectively utilized. In addition to production variable costs,
there is also an additional fixed cost of =C 50 associated with
each vehicle produced.

Vehicle Demand

The total assumed demand for vehicles is 2.25 million
units per year, spanning from 2025 to 2035. It’s important to
note that the total demand remains constant over this ten-
year planning period. However, the market share for the
four types of vehicles will vary. Each year, the percentage
split for each powertrain technology is assumed to remain
unchanged. In this model, I consider two distinct demand
scenarios categorized into two main groups: ’innovative’ and
’conservative.’ Figure 2 illustrates these two demand levels.

In both scenarios, ICEVs dominate the market share,
starting at about 75 %, and gradually decrease their market
share as PHEVs, BEVs, and FCEVs gain ground. In the ’inno-
vative’ scenario, I have a more optimistic outlook on electric
cars (BEVs and FCEVs) and assume that the market will be
more accepting of them. As a result, the market share for
these powertrains increases linearly each year at a higher
rate compared to the ’conservative’ scenario. Conversely, in
the ’conservative’ scenario, I assume that people will be more
cautious in adopting purely electric cars, so the market share
of PHEVs may increase more rapidly.

Overall Manufacturing Settings

In this model, the objective value NPV was evaluated at a
discount factor of 5% each year, and the final objective func-
tion is based on the year 2025. Additionally, for the alloca-
tion of the increased capital expenditure, it is assumed that
the spending is evenly distributed over 7 years. Furthermore,
the vehicle projects are determined in the years leading up to
2025, specifically from 2020 to 2024, and the capacity can
only be changed in 2025. All constant parameters are sum-
marized in Table 4, with further data available in the Data
Information Excel File.

Table 4: Constant Parameter Values

Constant Parameters Value

Parameter Unit Value

tmax years 7

cRD
v

=C 420 Million

cRampU pF ixed =C 20 Million

cRampU pVar =C / (car × year) 2.75

cResource =C / (car × year) 65

i % 5

θmax % 95

SOPmax vehicle projects 15

qmin cars 1 Million

5.1.2. Test Instances for the Different Policy System
The data is sourced from regulatory documents. This in-

formation is presented in different sections dedicated to the
different policy systems.

Super Credit System

For the test instance used in modeling the super credit
system, the information is sourced from the official website
of the European Union (European Commission, 2023). The
emission threshold from 2025 to 2029 is set at approximately
80 g/km, and by 2030, it is reduced to 60 g/km. Further re-
ductions occur by 2035 when the threshold is set at 45 g/km.
In the event of exceeding the carbon emission limits, the gov-
ernment would impose a penalty cost of =C 95 per unit of ex-
cess emissions (g/km) for each vehicle sold.

For the relaxed percentage of the low carbon emission
vehicle, the current regulation stipulates that from 2025 to
2029, car producers must exceed a minimum of 15 % in low
carbon emission vehicles to qualify for the relaxed threshold.
From 2030 to 2035 , this percentage requirement increases
to 35 %. Additionally, the maximum allowed increase for the
threshold relaxation is 5 % per year. For example, in 2030, if
a car manufacturer achieves a 38 % production of low carbon
emission vehicles, the relaxed threshold percentage would be
3 %. If the low carbon emission vehicle production further
increases to 45 %, the manufacturer would receive the max-
imum 5 % relaxed percentage. Table 5 provides a summary
of the parameters for the super credit system, and the math-
ematical formulation of the super credit system is detailed in
the section below. Also when calculating the percentage of
low carbon emission vehicles, the coefficient of low emission
vehicles in the numerator is linearly dependent on the actual
carbon emissions. With the inclusion of the PHEV multiplier
in the current policy setting, vehicles with 50 g/km carbon
emissions would start with a coefficient of 0.3 and increase
linearly as carbon emissions decrease. For example, a zero-
emission vehicle would have a coefficient of 1 , representing
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Figure 2: Vehicle Demand

Table 5: Super Credit System Parameters in Europe

Super Credit System Parameter Values

Factors Symbol Unit Value

Emission threshold E law
t g/km 80-60-45

Fleet emissions limit for low emission vehicle σlow g/km 50

Penalty cost cCO2 =C / (g/km) 95

Relaxed threshold before 2030 PEV thres
t Percentage 15%

Relaxed threshold after 2030 PEV thres
t Percentage 35%

Maximum relaxed threshold limit PSuperMax Percentage 5 %

PHEV multiplier γmutipl ier - 0.7

one car produced, while a car with 25 g/km emissions would
have a coefficient of 0.65.

Dual Credit System

For the test instances of the dual policy system in this
model, the policy information is referenced from a report
by the ICCT (International Council for Clean Transporta-
tion) (International Council on Clean Transportation (ICCT),
2016).

Regarding the target values for the CAFC score represent
in Equation (28), fuel consumption vehicles are categorized
into three groups (low, medium, large). The standard val-
ues SFC

vt are determined by applying the weight of each vehi-
cle size to the Chinese government’s fuel consumption stan-
dard formula (TransportPolicy.net, 2018). Furthermore, af-
ter 2030, the Chinese government plans to further reduce the
standard from an average of 4.0 L/100 km to 3.2 L/100 km,
resulting in lower fuel consumption standards for vehicles
of different sizes (International Energy Agency (IEA), 2021).
The resulted final consumption standards are detailed in Ta-
ble 6.

For the actual CAFC score calculation represent in Equa-
tion (29), the value is converted from the carbon emission
value. The actual coefficient AFC

vt for fuel consumption is ex-
pressed in units of L/100 km. The conversion from g/km

Table 6: Fuel Consumption Standard for Different Vehicle Sizes
(2025-2035)

Fuel Consumption Standard (2025-2035) [L/100 km]

Size Weight Before
2030

After 2030

Small 680 kg 3.6 2.88

Medium 1500 kg 4.05 3.22

Large 1995 kg 4.398 3.518

to L/100 km is given by 100 g/km= 4.25 L/100 km. Addi-
tionally, since the data is sourced from an EU country and
the measurement system differs, the Chinese government
would consider about a 15% adjustment (Tietge et al., 2017).
Therefore, the final actual fuel consumption should be mul-
tiplied by a factor of 1.15. Equation (5.1) provides a simple
example of the conversion calculation. Furthermore, for the
weighted factor W FC

v in calculating the actual CAFC score, it
is set to 1 for all types of vehicles in accordance with current
regulations.

100(g/km) = 4.25× 1.15= 4.8875(L/100km) (47)
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For the target NEV score calculation is represent in Equa-
tion (32). As for the target ratio Rt , it can vary from year to
year. In 2025, the target ratio is approximately 20%, increas-
ing to 40% by 2030, and eventually reaching 50% by the end
of 2035. The target ratio can be adjusted each year, although
there are no official rules announced. In this model, the tar-
get ratio is assumed to increase linearly and evenly each year,
with specific percentages detailed in Table 7.

Table 7: NEV Target Ratios for the Years 2025-2035

NEV Target Ratio (2025-2035) [%]

Year Target Ratio

2025 20%

2026 24%

2027 28%

2028 32%

2029 36%

2030 40%

2031 42%

2032 44%

2033 46%

2034 48%

2035 50%

The formula for the calculation of the actual NEV score
is in Equation (31). The weighted factor kv for the calcula-
tion of the actual NEV score could be hard to predict since
the value is different for specific vehicle model, to simply the
model, this model use the average score value and shown in
table 8.

Table 8: NEV Credits per Vehicle Type

Weighted Factor per Type

Vehicle Type Estimated NEV Credit

PHEV 1.6

BEV 4

FCEV 4.8

For the monetary value C DualC redi t , in Chen and He
(2022) article, the average exchange cost for one credit
is between 2600− 2900 RMB, so in this model it is assumed
to be 330 Euro after the currency exchange.

U.S. Emission Policy

The detailed emission threshold values E law
t in Equa-

tion (34) used in the US emission model are sourced from
the standard released by the US Environmental Protection
Agency (Register, 2023) and are summarized in Table 9. To

maintain consistency and precision, the units in the policy,
originally given in units of g/mile, have been converted to
units of g/km, with values rounded to one decimal digit.

5.2. Policy Comparison Experiment
This paper aims to employ mathematical models to ex-

plore the differences among three distinct emission policies
in Europe, China, and the US, while comparing them to the
baseline model with no emission policy in place. The results
will be evaluated under two different demand scenarios: con-
servative and innovative demand. Each policy’s parameters
have been calculated and estimated based on publicly avail-
able information.

For each policy scenario and demand type, a comprehen-
sive analysis will be conducted, including an examination
of the vehicle initialization schedule and production quan-
tities. Additionally, beyond the decision variables, the objec-
tive function will be thoroughly examined. This examination
will encompass cost structures and average fleet emissions
to gain insights into the impact of various emission policies.
Table 10 summarizes the experiment’s outline.

5.3. Sensitivity and Factorial analysis for Different Emission
policies

In addition to comparing different emission policies, this
paper will also conduct sensitivity and factor analyses for
each emission policy to assess how policy parameters affect
policy effectiveness and identify the parameters with the
most significant impact on emission policies. For sensitivity
analysis, each factor will be categorized into three levels:
low, basic, and high, and tests will be conducted at these
levels for analysis. In the factorial analysis, a 2-level factorial
analysis will be performed, reducing each factor to two lev-
els: high and low. A 1/2 fraction of the full factorial design
method will be used to enhance the efficiency of the factorial
analysis.

For the analyzed outputs, due to the extensive testing re-
quired, only two types of outputs will be compared: the net
total NPV (Net Present Value) and the percentage of low car-
bon emission vehicles. NPV is the objective function favored
by car manufacturers, as they seek to maximize NPV. How-
ever, this objective may conflict with the the reduction of
carbon emissions. Therefore, the percentage of low carbon
emission vehicles will also be analyzed to assess the policy’s
impact on social benefits from the government’s perspective
and evaluate policy effectiveness. Table 11 summarizes the
Design of Experiment (DOE) for the emission policy.

5.3.1. Super Credit System
For the Super Credit system policy in Europe, four factors

will be considered for the analysis. The first factor is the de-
mand type, which includes two scenarios: conservative and
innovative. The next factor is the threshold percentage for
relaxation, which is defined as the percentage of low emis-
sion vehicles with less than 50 g/km emissions. The thresh-
old is set in two stages, one before 2030 and one after 2030.
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Table 9: Federal Vehicle Emissions Standards

Year

2025 2026 2027 2028 2029 2030 2031
2032 and
later

Emission standard
(g/km) 149 152 134 116 99 91 82 73

Emission standard
(g/km) 92.9 94.8 83.5 72.3 61.7 56.7 51.1 45.5

Table 10: Comparison of Different Policy Experiments

Policy Comparison Experiment

Policy Type Demand Output

Super Credit System Con/Inno
• Vehicle initialization schedule
• Vehicle production quantity
• Cost structure
• Average fleet emission result

Dual Credit System Con/Inno

US Credit System Con/Inno

Baseline Model (No emission policy) Con/Inno

For the sensitivity analysis, the range of the threshold before
2030 is from set at level 5%, 15% and 25%, and after 2030,
it is at the level of 25%, 35% and 45%. The third factor is the
maximum allowed threshold percentage, which is at the level
of 1%, 5% and 9%. Finally, the PHEV multiplier, which pro-
vides a base percentage for PHEV-type vehicles, is included
in the analysis. It can be set to either "on" or "off" to test its
effect on NPV value and the actual quantity of low carbon
emission vehicles. These factors will be analyzed to under-
stand their impact on the NPV value and the quantity of low
carbon emission vehicles.

5.3.2. Dual Credit System
In the China dual credit system, four factors will be con-

sidered for analysis. The first factor is the demand type,
which is similar to the super credit system. The remaining
three factors are tested by percentage changes, and they in-
clude one important indicator for calculating the CAFC score,
one indicator for the NEV score, and one factor considering
the exchange cost for credit score realization. The level of
change for these factors is the same which are -50%, 0% and
50%. These factors will be analyzed to understand their im-
pact on the NPV value and the quantity of low carbon emis-
sion vehicles.

5.3.3. US Credit System
For the US credit system, apart from the demand type fac-

tor, one more factor which is the percentage change of regu-
lated threshold are considered at level of -10%, 0% and 10%.
Also strict or non-strict compliance would be tested as an-
other factor in this scenario. For strict compliance meaning
that the threshold could not be exceed and non-strict com-
pliance it is assumed the penalty cost would be similar in EU
with 95 =C/((g/km) × year).

6. Result

To assess the impact of various policy systems, Section 6.1
includes an analysis of the optimal production plan under
four different policy scenarios. Additionally, the considera-
tion of a multitude of parameters comes into play, with each
having the potential to influence the final outcomes of these
regulations. For this purpose, Section 6.2 conducts sensitivity
analysis at three different levels (low, basic, and high) for se-
lected parameters under different policies, while Section 6.3
performs a factor analysis of these parameters.

6.1. Optimal Production Plan
The detailed plan includes the initialization of vehicle

projects for each year from 2025 to 2035 , as well as the pro-
duction quantity for four different types of powertrain tech-
nologies.

In the vehicle project initialization section, the blocks are
separated by powertrain technology, vehicle project size, and
year. Gray blocks represent the start of a powertrain technol-
ogy in that year, while white blocks indicate that the vehi-
cle project will not be initiated. For the production quantity,
each year from 2025 to 2035 is categorized by powertrain
technology and filled with different patterns, as described in
the stacked bar chart.

Additionally, the average fleet emissions for each year
were plotted on a line chart, with the EU-regulated fleet emis-
sion threshold as a reference for comparison. The objective
value, composed of six main components [Capacity income
at the end of the period, Capacity increase cost, Development
cost, Profit, Fixed cost, Penalty cost/Dual Credit value], was
depicted in a bar chart. The final Net Present Value (NPV)
was shown on a line chart for further analysis. These visu-
alizations provide insights into the different policy scenarios
and their effects on production planning and emissions.
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Table 11: Summary of Design of Experiments (DOE) for Emission Policy

Summary for DOE of Emission Policy

Policy Type Factors Level Type Outputs

Super Credit System

Demand Type ConInno Option

NPV, EC percentage
Relaxed Threshold

Before 2030 [5% or 25%]
After 2030 [25% or 45%] Percentage

Maximum Threshold 1% or 9% Percentage

PHEV Multiplier Y/N Option

Dual Credit System

Demand Type Con/Inno Option

NPV, EC percentage

% change of Standard
Fuel Consumption

-50% or 50% Percentage

% change of exchange
price

-50% or 50% Percentage

% change of NEV
weight factor

-50% or 50% Percentage

US Credit System

Demand Type Con/Inno Option

NPV, EC percentage
% change of CO2
threshold

-10% or 10% Percentage

Strict compliance Y/N Option

Table 12: Parameter Changes for Dual Credit System

Dual Credit System Parameter Changes

Standard Fuel Consumption
(CAFC)

Exchange Price NEV Weighted Factor (NEV)

Example Base
(small_PHEV_low_2025)

3.6 =C330 1.6

-50% Percentage Change 1.8 =C165 0.8

+50% Percentage Change 5.4 =C495 2.4

Table 13: Parameter Changes for US Credit System

US Credit System Parameter Changes

Year 2025 2026 2027 2028 2029 2030 2031
2032 and
later

Emission standard
(g/km) 92.9 94.8 83.5 72.3 61.7 56.7 51.1 45.5

-10% Percentage
Change

83.6 85.3 75.2 65.1 55.5 51.3 36.0 41.0

+10% Percentage
Change

102.2 104.3 91.9 79.5 67.9 62.4 56.2 50.1

6.1.1. Conservative Demand
The following results were calculated under the assump-

tion of a conservative market demand for low-emission ve-
hicles, characterized by a lower growth rate in low-emission
vehicle adoption. This scenario represents a more cautious

market approach towards low-emission vehicles.

Detailed Portfolio Analysis

Figure 3 presents information for the four different emis-
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sion policies. In the scenario of no emission system, which
can be considered a reference point for interpreting the other
three policies, there are no penalties or restrictions on excess
fleet emissions. In this scenario, only vehicle projects that
contribute positively to the net present value of the portfolio
are initiated. From this scenario, it is evident that all types
of ICEV vehicles in each year have a positive effect on the
profit margin. However, for the small-sized PHEV, FCEV, and
BEV vehicles, the profit margin is consistently negative, so
there is no incentive for manufacturers to produce these ve-
hicle projects. For medium and large-sized vehicles in these
powertrain technologies, as production costs are assumed
to decrease due to technological development, medium and
large-sized PHEV projects are initiated after 2029, medium-
sized FCEV projects after 2031, large-sized FCEV projects af-
ter 2029, and all medium and large-sized BEV projects are
initiated due to their positive profit margins.

After analyzing the base scenario with no impact from
emission policies, three different major policies can be ana-
lyzed. Figure 3 shows that several vehicle types with nega-
tive profit margins are initiated in order to balance penalty
costs or meet the constraints on excess fleet emissions. The
Dual Credit Policy results in the lowest number, with about
70 initiated low-emission vehicle projects during the ten-year
planning period. It is followed by 76 vehicle projects in the
Super Credit System, while the US Credit System leads with
the highest number, with about 87 initiated projects. ICEV
vehicles dominate the portfolio, but in the US Credit System,
due to strict emission standards after 2029, small-sized ICEV
vehicles are terminated because of lower profit margins com-
pared to medium and large-sized ICEV vehicles. For PHEV
types, in the US Credit System, several small-sized PHEV
projects are initiated to meet emission constraints. How-
ever, in the Super Credit System and Dual Credit System,
no small-sized PHEV projects are initiated. Furthermore, at
the end of 2035, in the Super Credit System and US Emis-
sion System, there is a sudden drop in the number of large-
sized PHEV projects, likely due to the sufficient production of
zero-emission vehicles. For these projects, the profit margin
decreases, potentially falling below that of zero-emission ve-
hicle types due to increased production costs. For FCEV and
BEV types of vehicles, medium and large-sized versions are
initiated to balance the high CO2 emissions from ICEV vehi-
cles, and small-sized versions are initiated as a last resort. In
comparison, BEV projects are more favorable for manufac-
turers due to their higher profit margins.

Regarding production quantities, it is evident that manu-
facturers tend to align with market demand and produce as
many ICEV vehicles as possible. Comparing the results to the
base model with no emission policy, it can be observed that
all three emission policies would reduce the production quan-
tity of ICEV vehicles, with the US Emission Policy leading to
the largest reduction. In the Super Credit System, there is a
sudden drop in the production of ICEV vehicles at year 2035.
This drop is a result of the fleet emission threshold decreasing
from 60 g/km to 45 g/km, causing manufacturers to reduce
production to meet the stricter standards. For the Dual Credit

Policy, the initial production quantity in 2025 is lower due to
lower demand for low-emission vehicles and the lower fuel
efficiency of ICEV vehicles. However, in the following years,
production quantities increase since the ICEV vehicle become
more fuel efficient thus turns out to become more favorable
in the dual credit score system.

Fleet Emission and NPV Analysis

The fleet emissions and objective function composition
for the four different policy scenarios are depicted in Fig-
ure 4. The red line represents the EU-regulated threshold
for average CO2 fleet emissions and serves as a reference to
assess the impact of different emission policies. In the base
model, shown by the black line, there is some decrease in
fleet emissions due to technology development, but the av-
erage CO2 fleet emissions consistently remain above the EU
threshold meaning some regulation need to be performed as
an external force to control the fleeting emission. The three
different emission policies all have some effect on reducing
fleet emissions in each year. In the Super Credit System (blue
line), fleet emissions follow the EU-regulated threshold with
some relaxation in certain periods. In the Dual Credit System
(yellow line), the trend is similar to the line with no emis-
sion policy but with smaller absolute fleet emissions. How-
ever, fleet emissions are still above the EU-regulated thresh-
old. Lastly, in the US Emission System (green line), fleet
emissions strictly follow the US emission threshold, which
becomes more stringent after 2028.

In terms of net present value, the base scenario yields the
highest number. In the Dual Credit Policy, the NPV is also
high because manufacturers can earn money for producing
low-emission vehicles. Under conservative demand, man-
ufacturers would decide to produce more low-emission ve-
hicles to earn these new vehicle credits that could be trade
to earn some money. In the Super Credit System, a minor
amount of penalty cost is incurred, resulting in a 12% de-
crease in the net present value compared to the base model.
The US Emission System yields the lowest net present value,
as targets must be strictly met, leading to the production of
several low-profit-margin vehicle types and a 25% decrease
in the objective value.

6.1.2. Innovative Demand
In the Innovative demand scenario, the market is more

receptive to low-emission vehicles, with a higher growth rate
in the low-emission vehicle market.

Detailed Portfolio Analysis

In this demand scenario, the market introduction of new
vehicle project is similar but with some minor differences,
as described in Figure 5. In the baseline situation, medium-
sized FCEV projects in 2030 would also be initiated due to
higher demand, and the large-sized BEV vehicle project in
2025 would not be started to prioritize the production of
ICEV types. Compared to the conservative demand scenario,
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Figure 3: Optimal Portfolio for Different Policy in Conservative Demand

for all three policy scenarios, manufacturers would initial-
ize a lower quantity of low-emission vehicle types, prioritiz-
ing those with larger profit margins to balance penalties and

revenues. For example, small-sized PHEV vehicles would not
be initialized in the US emission system. Similarly, the small-
sized FCEV project would not start in the Super Credit system
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(a) Fleet Emission

(b) NPV Structure

Figure 4: Policy Comparison in Conservative Demand

and would have fewer years in the Dual Credit System and US
emission system. The same trend also applies to the small-
sized BEV vehicle projects, with fewer projects started after
2029 in the Super Credit System due to a larger demand for
other, more profitable low or zero-emission vehicle projects
that work to balance the CO2 emissions. Comparing the three
policies, the Dual Credit policy is much less sensitive to the
demand scenario for vehicle project initialization because of
its credit system policy. The initialized vehicle projects in the
optimal project portfolios for the innovate demand are sim-
ilar to the projects for the conservative demand since there
is no threshold but monetary incentives for manufacturers.
For the Super Credit System and US Emission System, pro-
ducers choose the vehicle type with the lowest emissions and
the highest profit margin to balance the extra emissions from
ICEV types and avoid penalty costs. Once the threshold is
met, there is no incentive for manufacturers to produce ad-
ditional low-emission vehicles. However, for the Dual Credit
System, it is always profitable to produce more low-emission
vehicles because manufacturers can earn more money for the
extra credits earned.

The production quantity graph in Figure 5 also shows a
similar trend. In the Dual Credit System, the total production
quantity of FCEV and BEV vehicles consistently increases as
the production of ICEV types decreases. However, for the
Super Credit System and US Emission System, the total pro-
duction quantity is lower due to reduced demand for ICEV
types of vehicles. Additionally, in the innovative demand sce-
nario, the composition of production quantities for different
powertrain types does not change significantly. However, in
the Dual Credit Policy scenario, the production quantity of
zero-emission vehicles increases to earn more money through
credits.

Fleet Emission and NPV Analysis

In the Innovative demand scenario, the line plot and bar

plot were used to analyze fleet emissions and NPV values,
as shown in Figure 6. The black line represents the base-
line model with no emission policy. After 2031, due to in-
creased market demand for low emission vehicles, fleet emis-
sions naturally fall below the EU regulated threshold. For
the Dual Credit Policy system (yellow line), fleet emissions
are much lower, reaching their lowest point after 2032. In
the Super Credit System (blue line), emissions follow the EU
regulated threshold until 2031, after which they drop further
due to market demand. The US Emission System (green line)
shows a similar trend, but after 2032, the emission threshold
is lower than the EU regulated threshold.

In the NPV structure graph, it can be observed that in
the Innovative demand scenario, compared with the conser-
vative demand situation, the differences in objective values
between different policies are smaller. The Dual Credit Pol-
icy has a higher NPV value, about 4% more compared to the
baseline model, due to the extra credits earned. For the Su-
per Credit Policy and US Credit Policy, the objective function
values are similar, both about 6% lower. The major reduc-
tion occurs before 2031, as after this year, the market itself
becomes more favorable toward low emission vehicles, and
the regulations have less or no effect on restricting manufac-
turers from producing more low emission vehicle types.

6.2. Sensitivity Analysis
In the context of sensitivity analysis for the policy factors,

this paper selects up to three key factors for each emission
policy. These factors are chosen based on their presumed sig-
nificance on the policy outcomes and their potential for being
readily adjusted by governmental authorities. For each factor
analyzed, this study employs stacked bar charts to compare
the Net Present Value (NPV) structure and the production
quantities of different vehicle types. Additionally, it includes
objective values and the percentage of low emission vehicles
in the total production as represented in the line on the bar
chart. The parameters are categorized into three levels with
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Figure 5: Optimal Portfolio for Different Policy in Innovative Demand

same intervals: high, basic, and low. The rationale behind
this categorization is twofold: first, to reduce the experimen-
tation process time, as each instance typically takes around

five minutes to yield results, and second, the factors would
not influence the trends. Further details regarding the pa-
rameter adjustment range can be found in Section 5.3.
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(a) Fleet Emission

(b) NPV Structure

Figure 6: Policy Comparison in Innovative Demand

6.2.1. Super Credit System
Under the Super Credit System, this analysis focuses on

three crucial factors: the regulated percentage of low emis-
sion vehicles, the maximum allowable relaxation percentage,
and the PHEV multiplier. The regulated low emission ve-
hicle percentage represents the minimum proportion of low
emission vehicles (those emitting less than 50 g/km of CO2)
that must be met before relaxation of the emission thresh-
old is permitted. The maximum allowed relaxation percent-
age sets the upper limit for threshold relaxation. Finally, the
PHEV multiplier determines whether PHEV-type vehicles re-
ceive a multiplier effect, meaning that when their CO2 emis-
sions reach 50 g/km, they are counted as approximately 0.3
of a production unit instead of 0. The mathematical formu-
lation for these factors can be found in equations 19.

Regulated EV Percentage

In the objective value diagram, I observe that as the re-
quired Regulated Low Emission Vehicle Percentage increases,
the objective value is slightly affected, resulting in a decrease
in the final NPV value. This trend is similar for both con-
servative and innovative demand scenarios, as shown in the
Objective Value graph in Figure 7. However, the differences
are smaller in the innovative demand scenario. The primary
factor driving this cost difference is the penalty cost. As the
required percentage increases, it becomes more challenging
for manufacturers to achieve the goal percentage needed to
benefit from the Super Credit Policy. This results in a higher
penalty cost, which negatively impacts the NPV value.

In the production portfolio for different vehicle types, I
observe a significant difference in the percentage of low emis-
sion vehicles produced as the threshold percentage is ad-
justed. When the threshold percentage is increased by about
10%, the percentage of low emission vehicles produced in-
creases from 32.3% to 34.2%, representing a 2% increase.
This change is mainly driven by the increase in the produc-

tion volume of PHEV vehicles. On the other hand, when the
threshold percentage is decreased, there is a slight reduction
in the production of low emission vehicles, but this reduction
is only about 0.4%, which is relatively small compared to the
impact of increasing the threshold. Furthermore, in the in-
novative demand scenario, the production portfolio shows
less variation and remains at a level of about 40%. This per-
centage level is higher than the percentage assumed for the
conservative demand scenario and indicates that in the inno-
vative demand scenario, a larger proportion of low emission
vehicles is produced regardless of the threshold percentage.

Maximum Allowed Relaxed Threshold

When I analyze the change in the maximum relaxed
threshold allowed in the Super Credit System, I observe that
as the allowed percentage increases, the objective value also
increases. The primary difference is most noticeable in the
penalty costs. This trend is more evident in the conserva-
tive demand scenario, as in the innovative demand scenario,
manufacturers have a stronger incentive to produce low
emission vehicles. In conclusion, the relaxation of Super
Credit thresholds has a smaller impact on the production
portfolio in the innovative demand scenario.

When examining the percentage of low emission vehicles
produced in both innovative and conservative demand sce-
narios, I observe a stable trend with some slight differences.
At allowed percentages of about 1% and 9%, the percentages
are similar, likely due to changes in PHEV production. How-
ever, at higher or lower allowed percentages, manufacturers
tend to produce more PHEV vehicles to increase their profits
in conservative demand scenarios, while they produce fewer
PHEV vehicles in innovative demand scenarios. The percent-
age of low emission vehicles is more stable in innovative de-
mand, with only a 0.2% change compared to about 1% in
conservative demand.
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(a) Composition of the Objective Value (b) Composition of the Vehicle Portfolio

Figure 7: Analysis for Change of Regulated EV Percentage

(a) Composition of the Objective Value (b) Composition of the Vehicle Portfolio

Figure 8: Analysis for Change of Maximum Relaxation Percentage

PHEV Multiplier

In the implementation of the super credit policy, the in-
troduction of the PHEV multiplier was intended to incentivize
manufacturers to produce more PHEV vehicles. However, the
results of the sensitivity analysis suggest that the PHEV mul-
tiplier may not significantly influence the behavior of manu-
facturers, possibly due to the relatively low market demand
for PHEV vehicle types. The analysis shows that there are no
significant differences in both the NPV graph and the vehicle
portfolio graph. The composition and absolute values remain
largely unchanged, with the conservative demand scenario
consistently having a higher NPV objective value and about
10% fewer low emission vehicles produced.

6.2.2. Dual Credit System
In the Dual Credit System, calculating dual credits in-

volves complexity, and this paper simplifies certain factors
by using average values. The system comprises three main
parts, with one crucial factor selected from each part. These
parts encompass the standard fuel consumption in calculat-
ing the CAFC score for traditional ICEVs, the credit exchange
price, and the NEV weight factor in calculating the NEV score
for low-emission vehicles (PHEV, FCEV, BEV). To analyze the

impact of these factors, adjustments of approximately 50%
compared to the current assumptions were made.

Standard Fuel Consumption (CAFC)

The change in the standard fuel consumption criteria has
a notable impact on the manufacturer’s objective value. With
stricter restrictions, the objective value decreases because the
manufacturer’s ability to earn dual credits as extra profit di-
minishes. Conversely, as the standard fuel consumption in-
dex becomes more relaxed, the objective value increases.
Specifically, a 50% decrease in the index leads to a 27% de-
crease in the objective value in a conservative demand sce-
nario and an 18% decrease in an innovative demand sce-
nario. Conversely, when the index becomes more relaxed,
the objective value increases by approximately 16% in both
demand scenarios.

Regarding the percentage of different vehicle types pro-
duced, in a conservative demand scenario, a stricter Stan-
dard Fuel Consumption index leads to a significant increase
in the percentage of low emission vehicles produced, approx-
imately 6%. Conversely, a more relaxed index results in a
minor decrease in the percentage of low emission vehicles
produced, about 0.4%. In an innovative demand scenario,



Z. Shi / Junior Management Science 10(3) (2025) 748-780 771

(a) Composition of the Objective Value (b) Composition of the Vehicle Portfolio

Figure 9: Analysis for Change of PHEV Mutiplier

(a) Composition of the Objective Value (b) Composition of the Vehicle Portfolio

Figure 10: Analysis for Change of CAFC Standard Fuel Consumption

a stricter index leads to a smaller increase of around 1% in
the production of low emission vehicles, compared to a con-
servative demand scenario. A more relaxed index in the in-
novative demand scenario also results in a modest increase
of approximately 0.6% in the percentage of low emission ve-
hicles produced, along with an increase in total production
volume to earn more dual credit.

Exchange Price

The change in the exchange price for the dual credit pol-
icy affects both the objective value and the production port-
folio. When the exchange price increases, the objective value
for the manufacturer also increases, but the extent of the in-
crease is smaller compared to changes in the Standard Fuel
Consumption index in CAFC credit calculation. This trend
and value of increment are similar in both conservative and
innovative demand scenarios, with about a 50% increase in
the price resulting in about a 2% to 5% increase in NPV.

Regarding the production portfolio, as the price increases,
manufacturers tend to produce more low emission vehicles to
earn the dual credit value. The demand scenario does not sig-
nificantly affect the trend, and the percentage increase tends
to follow a logarithmic pattern rather than a linear one. With

a larger price, there is a lower increase rate in the production
of low emission vehicles.

NEV Weighted Factor (NEV)

The NEV weight factor index is a critical factor in de-
termining the NEV score in the dual credit policy system.
This factor determines how much low emission vehicles are
counted in calculating the NEV score. A higher NEV weight
factor index score gives low emission vehicles a higher score
in the NEV score calculation, which can help manufacturers
earn more value. As the NEV weight factor index increases,
the objective value also increases. This trend is consistent in
both demand scenarios and increases linearly by about 4.

Regarding the percentage of the production portfolio, an
increase in the NEV weight factor index motivates vehicle
manufacturers to produce more low emission vehicles in both
demand scenarios. The increase is also linear, with a slightly
lower rate of increase in the innovative demand scenario, but
it results in about a 1% increase in the absolute value in both
scenarios. The increase in low emission vehicle production is
more prominent for FCEV vehicles since FCEV has the highest
NEV weight factor compared to other vehicle types.
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(a) Composition of the Objective Value (b) Composition of the Vehicle Portfolio

Figure 11: Analysis for Change of Exchange Price

(a) Composition of the Objective Value (b) Composition of the Vehicle Portfolio

Figure 12: Analysis for Change of NEV Weighted Factor

6.2.3. US Credit System
The US Credit System is a less complicated emission pol-

icy system that only includes a threshold for the average fleet
emission volume in each year. However, this threshold is cru-
cial in determining the effectiveness of this policy. A sensi-
tivity analysis is performed on this threshold value to under-
stand its impact on the policy’s outcomes.

Average Fleet Emission Threshold

Figure 13 shows that the threshold for the average fleet
emission has an impact on the objective value as well as the
vehicle production portfolio. As the threshold decreases and
becomes more stringent, the objective value decreases, with
a larger decrease in the conservative demand scenario (about
14%) due to more restrictions on the production of ICEV ve-
hicle types. In the innovative demand scenario, the decrease
is about 8%. However, as the threshold is relaxed, the objec-
tive increases, to a greater extent in the conservative demand
scenario due to the more relaxed restrictions. In the innova-
tive demand scenario, the net objective value does not in-
crease as much because market demand already motivates
manufacturers to produce more low-emission vehicles.

Regarding the vehicle production portfolio, allowing
fewer fleet emissions leads manufacturers to produce a larger
number of low-emission vehicles, a trend that applies to both
conservative and innovative demand scenarios. It is also ob-
served that in the conservative demand scenario, a more re-
laxed threshold encourages manufacturers to produce more
ICEV and PHEV vehicles, resulting in a slower decrease in
the total percentage of production for low-emission vehicles.

6.3. Factors Analysis
Factorial analysis was conducted to assess how different

factors affect the final outcome of the policy. The results were
analyzed with a focus on two key indicators: NPV value and
EV percentage (the percentage of low-emission vehicle pro-
duction). These indicators were chosen to evaluate how the
factors impact both the manufacturer’s profit and the govern-
ment’s environmental goals. The NPV value serves as a mea-
sure of how these factors affect the manufacturer’s profitabil-
ity. A higher NPV value is generally preferred by manufactur-
ers, and the government also aims to ensure that manufac-
turers remain profitable to retain their presence in the coun-
try. The EV percentage is used to assess how well manufac-
turers comply with regulations related to producing environ-
mentally friendly vehicles. A higher EV percentage indicates
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(a) Composition of the Objective Value (b) Composition of the Vehicle Portfolio

Figure 13: Analysis for Change of US Emission Threshold

that a greater number of low-emission vehicles are being pro-
duced, which contributes to lower overall CO2 fleet emis-
sions. This aligns with the goals of emission policies to re-
duce environmental impact. By analyzing how these factors
influence NPV and EV percentage, the car manufacturer can
better understand the implications of different policy choices
on both economic and environmental outcomes.

Three graphs have been generated to analyze the factors.
The first one is a Pareto Chart, which is used to assess the
absolute value of the importance for each factor and their
cross-combinations. The factors are ordered from the most
important to the least important, and a red vertical reference
line is drawn to indicate which factor is statistically signifi-
cant. The second plot is the Main Effect Plot, which checks
how each factor affects the objective value output. Each fac-
tor is represented by a line with a different slope. A hori-
zontal line indicates that the factor has no significant impact
on the mean value of the chosen indicator. This allows for
the visual analysis of the linear relationship between the fac-
tor and the indicator. The last graph is the Interaction Plot,
which shows the relationships between different factors and
the continuous indicator values. It is plotted in several blocks
according to the factors’ combinations. The main blocks to be
analyzed are the three plots with a white background. By us-
ing this interaction plot, the effects of different factors can
be compared under two different demand levels, which are
considered uncertain factors that need to be estimated. Un-
derstanding the differences between different demand levels
is essential for the car manufacturer to understand the policy
effect. These three plots provide a thorough understanding
of these factors and offer insights into the emission policy’s
details and outlook.

6.3.1. Super Credit System
In the Super Credit System, four factors have been se-

lected, which are the same factors that were analyzed in the
sensitivity analysis in section 6.2.1.

Net Present Value

Figure 14 and Figure 15 contain information related to
the factorial analysis of the net present value (NPV) in the
Super Credit policy. The Pareto graph in Figure 14 reveals
that the demand level has the most significant impact on the
net objective value of the vehicle manufacturer, with high
statistical significance at the 0.05 level. For the other fac-
tors, namely Maximum percentage allowed, regulated EV
percentage required, and the PHEV multiplier, their impor-
tance is not significantly different and lacks statistical sig-
nificance at the current confidence level. Additionally, from
the main effect chart in Figure 14, it is evident that under
the Super Credit policy system, the objective value substan-
tially increases with a conservative demand level, exhibit-
ing a steep slope. Conversely, for the other three factors,
the slope is nearly horizontal, indicating minimal differences
between lower and higher levels. Lower regulated EV per-
centage thresholds result in slightly higher profits, while the
trend for the maximum percentage allowed differs, resulting
in lower objective values for lower percentages. The factor
PHEV multiplier does not affect the objective value signifi-
cantly and remains flat in the fitted means value comparison.

The interaction plot in Figure 15 reveals the interactive
relationship between the factors. It is evident that, under dif-
ferent scenarios, the impact of the three factors related to the
super credit system remains consistent. The slope lines for
low and high values overlap, indicating that conservative de-
mand consistently results in a higher objective value, regard-
less of variations in the factors. However, as the demand level
changes, the effects of factor adjustments show some slight
differences. Concerning the regulated EV percentage thresh-
old, in the innovative demand scenario, there is a slightly
more noticeable decrease in the objective level as the thresh-
old percentage increases. The maximum percentage allowed
does not exhibit differences between different demand sce-
narios. Yet, for the PHEV multiplier, the trend varies between
the two demand scenarios. There is a positive relationship in
the conservative demand scenario and a negative relation-
ship in the innovative demand scenario. This suggests that
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(a) Pareto Chart for Factor Analysis (b) Main Effect Plot

Figure 14: Factor analysis in Super Credit System for NPV

Figure 15: Interaction Plot of NPV in Super Credit System

the implementation of the PHEV multiplier would increase
manufacturer profits in a conservative demand scenario but
decrease profits in an innovative demand scenario. Although
the slope remains flat in this experiment, it could increase as
the policy maker assigns a higher value to the PHEV multi-
plier.

EV Percentage

Figure 16 and Figure 17 provide information regarding
the factorial analysis for the percentage of low emission ve-
hicles produced under the Super credit policy. The Pareto
chart in Figure 16 indicates that the demand level is the only
factor with statistical significance in altering the percentage
of low emission vehicles (EVs) produced. The other factors
are of similar importance. The main effect plot also illustrates
that innovative demand results in a significantly higher per-
centage of electric vehicle production, represented by a steep
slope. Conversely, for the other factors, such as the regulated
EV percentage threshold, there is a slight increase in the pro-

duction volume of electric vehicles. The maximum allowed
percentage and PHEV multiplier yield horizontal lines, signi-
fying no substantial differences in the level of electric vehicle
production.

Furthermore, the interaction plot in Figure 17 suggests
that the policy factor levels do not significantly affect the
percentage of electric vehicles produced under different de-
mand scenarios. Only the regulated EV percentage threshold
exhibits a flatter slope in the innovative demand scenario,
indicating that a lower regulated EV percentage threshold in
conjunction with innovative demand results in slightly more
electric vehicle production. Regarding the influence of the
demand level on the policy factors, there are some minor dif-
ferences. In the innovative demand scenario, changes in the
three Super credit policy factors do not affect the percentage
of electric vehicles produced, resulting in a horizontal line.
However, in the conservative demand scenario, an increase
in the regulated EV percentage threshold leads to higher elec-
tric vehicle production, while an increase in the maximum
percentage allowed for relaxation and the implementation of
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(a) Pareto Chart for Factor Analysis (b) Main Effect Plot

Figure 16: Factor analysis in Super Credit System for EV percentage

Figure 17: Interaction Plot of EV Percentage in Super Credit System

the PHEV multiplier results in a slight decrease in the percent-
age of electric vehicles produced. Nonetheless, the decrease
in production volume in the latter cases is not significant at
the current difference levels.

6.3.2. Dual Credit System
Under the dual credit system, four factors have been se-

lected for analysis, and these factors align with those exam-
ined in the previous sensitivity analysis in Section 6.2.2.

Net Present Value

Figure 18 and Figure 19 provide information regarding
the factorial analysis of the Net Present Value (NPV) under
the Dual Credit policy. From the Pareto chart, it is evident
that the most important factor affecting the manufacturer’s
NPV is the change in the CAFC index, which represents the
standard fuel consumption value. This factor is statistically
significant at a 95% confidence interval. The following fac-
tors, in descending order of importance, are the NEV index
(NEV weighted factor), exchange price, and demand level.

In the main effect plot, it can be observed that for the de-
mand level and all three dual credit policy factors, there is
a linear positive trend. As these factor values increase, the
NPV also increases. However, unlike the Super Credit policy,
the demand level exhibits only a minor difference, with in-
novative demand resulting in slightly higher NPV compared
to conservative demand.

The interaction plot in Figure 19 is slightly more complex
when compared to the Super Credit policy. It reveals the in-
terplay between different factors at different levels and under
varying demand scenarios.

For the CAFC index, it is evident that the demand level
doesn’t have a significant impact on the NPV value. Higher
CAFC index values result in higher NPV values, regardless
of the demand level. In the case of the exchange price and
NEV index, the trend differs between the two demand scenar-
ios. When the exchange price is high, both demand scenar-
ios yield similar NPV values. However, as the exchange price
decreases to a lower value, the innovative demand scenario
leads to higher earnings for the manufacturer. Regarding
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(a) Pareto Chart for Factor Analysis (b) Main Effect Plot

Figure 18: Factor analysis in Dual Credit System for NPV

Figure 19: Interaction Plot of NPV in Dual Credit System

the NEV index, the trend is opposite to that of the exchange
price. In the innovative demand scenario, a higher NEV in-
dex results in greater earnings. As the NEV index decreases
to lower levels, the benefits diminish. The full matrix inter-
action plot also demonstrates the effects of changing policy
factors under different demand levels. In a conservative de-
mand scenario, the CAFC index exhibits the steepest positive
slope, followed by the exchange price and NEV index, which
have similar positive slopes. This suggests that increasing
these factor values leads to higher earnings for the manu-
facturer. Conversely, in the innovative demand scenario, the
CAFC index doesn’t result in significant differences. How-
ever, the slope for the exchange price becomes flatter, indi-
cating a lower increase in NPV value as the exchange price
increases. The NEV index slope becomes steeper, signifying
higher profits as the NEV index value increases.

EV Percentage

Figure 20 and Figure 21 provide information on the fac-

torial analysis for the percentage of low emission vehicles
produced under the Dual credit policy. The Pareto Chart re-
veals that none of the factors have statistical significance in
affecting the percentage of electric vehicles produced in the
Dual emission policy system. The demand level is the fac-
tor with the most significant impact, but it does not reach
statistical significance. From the main effect plot, it can be
concluded that the innovative demand scenario results in a
higher percentage of electric vehicle production. The CAFC
index and the NEV index reduce the proportion of electric ve-
hicles produced, with higher index values indicating greater
tolerance for fuel-powered vehicles. However, the exchange
price does not significantly affect the percentage of electric
vehicles produced, as there is no observable difference as the
price changes from low to high.

The interaction plot in Figure 21 shows that the values
of the dual policy factors do not alter the trend of electric
vehicle production in different demand levels. Innovative
demand consistently leads to a higher percentage of electric
vehicles in the production portfolio. The slope varies, with
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(a) Pareto Chart for Factor Analysis (b) Main Effect Plot

Figure 20: Factor Analysis in Dual Credit System for EV percentage

Figure 21: Interaction Plot of EV Percentage in Dual Credit System

higher values of the three dual policy factors resulting in a
greater increase in the percentage of electric vehicles in the
production portfolio. Regarding the influence of changes in
dual credit policy under different demand levels, in a con-
servative demand scenario, the percentage of electric vehicle
production decreases as the factor values increase. The CAFC
index exhibits the largest slope, followed by the NEV index
and the exchange price. However, in the innovative demand
scenario, the impact of changes in the CAFC index and NEV
index is much lower, and for the exchange price, the per-
centage of electric vehicle production actually increases as
the price increases. This may be due to increased market de-
mand for low-emission vehicles, motivating manufacturers to
produce more electric vehicles to earn from the dual credit
score and achieve better profits.

6.3.3. US Credit System
The US credit system is simpler, with only one policy-

related factor, which is the CO2 emission threshold value.
Figure 22 and Figure 23 depict the main effect and inter-
action plots for the net present value (NPV) and the elec-

tric vehicle (EV) percentage in the entire production port-
folio. For the net present value, in the innovative demand
scenario and with a higher level of the emission threshold,
the manufacturer achieves a higher NPV. The slope is sim-
ilar, indicating that the difference in threshold value has a
consistent effect on the NPV regardless of the demand level.
The interaction plot shows that in the conservative demand
case, the NPV is more sensitive to changes in the threshold
value, but the innovative demand scenario consistently re-
sults in a higher NPV. Regarding the electric vehicle percent-
age in the production portfolio, the innovative demand sce-
nario yields a higher electric vehicle percentage. However, a
higher threshold value leads to a lower proportion of electric
vehicles produced. The effect of threshold changes on the
electric vehicle production percentage is consistent in both
demand scenarios, with innovative demand consistently re-
sulting in a higher percentage of electric vehicles produced,
albeit with some absolute value differences.
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(a) Main Effect Plot (b) Interaction Plot

Figure 22: Factor analysis in US Credit System for NPV value

(a) Main Effect Plot (b) Interaction Plot

Figure 23: Factor analysis in US Credit System for EV percentage

7. Conclusion and Outlook

This article employs a mathematical model, primarily a
mixed-integer linear model, to characterize car manufactur-
ers’ production portfolios under different emission policies.
The aim is to gain a more quantitative understanding of var-
ious policy systems and their effectiveness. By integrating
actual datasets with different demand scenarios and policy
parameters, the study simulates the impact of these policies,
assuming that manufacturers strive to maximize their profits.

The results indicate that all three policy systems in Eu-
rope, China, and the United States contribute to increased
production of low-emission vehicles compared to the base
model with no policy in place. Regarding the initialization
of low-emission vehicles, the US emission policy leads to
the most significant increase in the number of vehicle initia-
tions, while the Super Credit Policy in Europe and the Dual
Credit Policy perform similarly in this regard. However, from
a financial perspective, the Dual Credit Policy performs the
best in preserving the car manufacturer’s profit, while the US

emission policy has the most detrimental effect on the manu-
facturer’s profit. For the average fleet emissions, both the Su-
per Credit Policy and the US emission policy effectively track
the trend set by the regulated emission threshold. However,
the Dual Credit Policy does not have a fixed threshold but
rather follows emissions according to market trends. As the
market increasingly favors low-emission vehicles, resulting
in a shift towards an innovative demand scenario where con-
sumers prefer such vehicles, the fleet emissions are lower in
response to this trend.

Furthermore, my experiments show that, it is evident that
for the Super Credit Policy and the US Emission Policy, the
demand level has a significant impact on the profit of the car
manufacturer and the percentage of low-emission vehicles
produced. In contrast, the Dual Credit Policy exhibits notable
differences, where the demand level appears to influence pri-
marily the percentage of low-emission vehicles produced but
not the objective value.

Speak to the specific parameter factors, the Super Credit
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System does not exert a substantial influence on either of the
indicators, namely NPV (Net Present Value) and EV (Elec-
tric Vehicle) percentage. However, for the Dual Credit Policy
and the US Emission Policy, these factors exhibit a relatively
higher effect on both indicators, with the CAFC index being
the most significant factor in the Dual Credit Policy. Notably,
the market exchange price for the Dual Credit only appears to
impact the net present value and not the percentage of low-
emission vehicle production. In the context of the US emis-
sion policy, the only factor, which is the carbon fleet emission
threshold, plays a significant role in determining the manu-
facturer’s profit and the policy’s effectiveness.

There are several limitations to this study. Firstly, regard-
ing the model solving method, the Super Credit System pol-
icy is not formulated as a linear model and cannot be readily
transformed into a linear form for optimization. Instead, a
heuristic method was employed to solve this model in two
steps. While this approach may not guarantee an optimal
solution, however, my experiments showed that the heuris-
tic gives good quality solutions that resulting deviations are
unlikely to have a significant impact.

Secondly, in this study, market demand is based on sim-
plified assumptions and is not specific to individual vehicle
models. The total demand amount is assumed to be constant
for each year in the planning period, and vehicle sales quan-
tities may vary due to consumer preferences. Additionally,
the vehicle type segmentation used in this study is relatively
broad, categorizing vehicles based on powertrain technology,
size, year, and power range. In reality, there is a much larger
variety of vehicle models. To address this limitation, a more
accurate demand prediction model could be integrated into
the analysis to enhance result accuracy.

Thirdly, some of the policy-specific parameters are based
on assumptions. For instance, in the Dual Credit Policy sys-
tem, certain parameters such as fuel consumption standard in
CAFC score calculation or the weighted factor for actual NEV
credit calculation are calculated based on detailed descrip-
tions of specific vehicle models and are not included in the
dataset due to privacy concerns. Obtaining a more compre-
hensive dataset may require closer collaboration with vehicle
manufacturers.

At last, in the real market scenario, the cooperation be-
tween the different vehicle manufacturer should also been
considered. In this study, it is assumed that only one vehicle
manufacturer exists and there would be any market trading
activity occurs. These activities is hard to be modelled but if
necessary could be added to this model for a more accurate
result.
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