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Predicting Stock Returns With Machine Learning: Global Versus Sector Models

Johannes Witter

Technical University of Munich

Abstract

Recent studies highlight the superior performance of non-linear machine learning models, such as neural networks, over
traditional linear models in predicting cross-sectional stock returns. These models are capable of capturing complex non-linear
interactions between predictive signals and future returns. This thesis researches whether sector-specific neural networks
can detect sector-related relationships to outperform a global neural network. It evaluates the predictive power of these
models at the stock level and in portfolios based on return forecasts, constructing long-short portfolios from the networks’
sorted predictions. A global neural network model trained on the full sample of stocks dominates neural networks trained
on individual GICS sectors in predicting the cross-section of US stock returns. Sector-specific neural networks fail to gain
an advantage by capturing complex sector-specific interactions. They underperform the global neural network especially in
the early out-of-sample period. The smaller sample size for each GICS sector requires a trade-off between model complexity
and robust model estimation. Pooling the data for the global model solves this problem and supports the predictive power of
neural networks for stock returns.

Keywords: cross-section of stock returns; machine learning; neural networks; return prediction; sector models

1. Introduction

I compare a global neural network with sector-specific
neural networks to predict the cross-section of US stock re-
turns. Therefore, I evaluate the predictive power of the two
different models at the stock level and in portfolios con-
structed based on return forecasts. Recent research demon-
strates the ability of non-linear machine learning models
such as neural networks to outperform traditional linear
models in predicting the cross-section of returns. I show
how these neural networks perform better when trained on
pooled data across sectors than on sector-specific data from
GICS sectors. My data sample covers the sample period from
July 1963 to December 2022, with an out-of-sample period
from January 1994 to December 2022. The global neural

I would like to express my gratitude to all the people who have supported
me in the realization of this thesis. In particular, I would like to thank my
supervisor, Dr. Matthias Hanauer, for giving me the opportunity to work
on this interesting topic and for his guidance and inspiration throughout
the work on my thesis.

network achieves a higher positive out-of-sample R2
OOS than

the sector models, which underperform a naive forecast of
zero. For long-short portfolios based on the sorted predic-
tions of the neural networks, the global model outperforms
the sector models in terms of generated monthly returns
and Sharpe ratio. The comparison of sector neural networks
with simple OLS models highlights the necessary trade-off
between estimating a stable model without overfitting and
capturing complex sector-specific interactions.

I follow the machine learning training approach of Gu et
al. (2020). I train neural networks with three hidden lay-
ers on 212 stock-specific signals from prior literature to pre-
dict the cross-section of returns for the US stock market. The
neural networks are trained using a recursive scheme with
increasing training samples and a fixed size rolling sample
for validation. I refit all models once per year in December
and predict monthly out-of-sample returns over the following
year.

In total, I train eleven different neural network models.
A global model is trained on the full sample of stocks. The
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sector model consists of ten sector-specific neural networks
trained on subsets of the sample data filtered for each of the
ten sectors defined by the Global Industry Classification Stan-
dard (GICS). To assign stocks to sectors, I use existing data
on GICS classifications and a custom mapping from the Stan-
dard Industrial Classification (SIC) system to GICS sectors.

First, I evaluate the two models on their the out-of-sample
predictive performance for individual stock return forecasts.
The global model outperforms the sector models in all indi-
vidual GICS sectors and in the full sample. The global neural
network produces a monthly R2

OOS of 3.37% in the full sam-
ple and a positive R2

OOS for each of the ten sectors. The sector
models achieve a monthly R2

OOS of -6.06% in the full sample,
so they underperform a naive forecast of zero for all monthly
stock returns. Sector models perform particularly poorly in
predicting stock returns in sectors with small sample sizes.

To understand the differences in predictive performance,
I examine the importance of each input variable in predicting
returns with the neural network models. Variable importance
is determined by the reduction in R2

OOS that results from set-
ting all values of a particular signal to zero while holding
all other model estimates fixed. The different models share
most of their most important variables. Analogous to Blitz
et al. (2023), Size is the most influential signal in predict-
ing returns in the global model and in most sector models.
The neural networks tend to perform well in out-of-sample
return forecasting when their relative importance is skewed
towards Size. Sector models with a broader set of influential
characteristics underperform out-of-sample.

I compare the profitability of portfolios based on the
sorted predictions of the global model with the sector mod-
els. At the end of each month, I sort the stocks into decile
portfolios and calculate the value-weighted returns of hold-
ing the decile portfolios over the next month. A long-short
portfolio buys stocks with the highest expected returns and
sells those with the lowest. Portfolio strategies based on the
out-of-sample predictions of the global model outperform
the sector-specific models. A long-short portfolio based on
the global model’s forecasts achieves an average monthly
out-of-sample return of 2.71% and an annualized Sharpe
ratio of 2.07. A long-short portfolio based on the forecasts
of the sector models generates an out-of-sample monthly re-
turn of 0.99% and an annualized Sharpe ratio of 1.14. The
outperformance of the global neural network is particularly
strong in the early years of the out-of-sample period. During
this period, the global model achieves its highest returns
while the sector models struggle to remain profitable.

The sector-specific neural networks continue to underper-
form when compared to simple ordinary least squares (OLS)
models. A long-short portfolio based on the sorted predic-
tions of the OLS sector models generates a higher value-
weighted return than the sector neural networks. However,
the OLS outperformance comes only from the first half of
the out-of-sample period when less training data is available.
Small sector sample sizes require a trade-off between stable
model estimation and capturing complex sector-specific in-
teractions. The global neural network trained on pooled data

significantly outperforms the OLS models.
The global neural network shows some out-of-sample sec-

tor allocation power. In the cross-section of sectors, it cor-
rectly predicts higher relative returns for the most profitable
sectors and lower returns for the least profitable sectors. As
a result, the returns generated by the global model are lower
with sector-neutral portfolios.

Section 2 reviews the recent literature on machine learn-
ing for return forecasting and global versus industry-specific
models. Section 3 presents the sources of stock data and in-
put signals for return prediction and explains the sector clas-
sifications. Section 4 describes the methodology used to train
neural networks for return prediction and to construct port-
folios based on these predictions. Section 5 presents the re-
sults of comparing the forecasting performance of the global
model with the sector models. Section 6 concludes.

2. Literature review

The past decades produced a variety of literature focus-
ing on predicting the cross-section of stock returns. Authors
explore a variety of variables in linear models, but there is
still a lack of consensus regarding which variables are re-
lated to expected stock returns. This problem is often re-
ferred to as factor zoo. Linear models cannot deal with many
variables and their potential nonlinearities and interactions.
Therefore, recent research focuses on more complex machine
learning models to handle the high dimensionality in the fac-
tor zoo.

Early literature focuses on single machine learning mod-
els and their ability to outperform traditional methods.
Moritz and Zimmermann (2016) propose tree-based con-
ditional portfolio sorts as a machine learning approach. In
their models, recent past returns within the last six months
predict future returns and outperform linear models like
Fama-MacBeth regressions. Excess returns persist even after
accounting for transaction costs and common risk factors.
Traditional methodologies with linear assumptions fail to
capture a nonlinear relationship between past and future
returns.

A nonparametric model using adaptive group least abso-
lute shrinkage and selection operation (LASSO) isolates rel-
evant predictors in a high-dimensional setting in Freyberger
et al. (2020). A small subset of variables, including size, to-
tal volatility, and recent return-based metrics, provide unique
predictive power. Their model significantly outperforms lin-
ear approaches like those of Lewellen (2015) with higher
out-of-sample Sharpe ratios. The nonparametric model se-
lects fewer variables in-sample than the linear models but
captures nonlinear interactions.

Gu et al. (2020) are among the first to present a com-
parative analysis of machine learning models for predicting
stock returns. Their models agree on a small set of domi-
nant variables, with price trends, liquidity, and volatility as
the most influential predictors. Neural networks perform
the best among all machine learning models, and portfo-
lios sorted on neural network return predictions double the
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Sharpe ratios of linear models. Shallow neural networks out-
perform deeper ones due to the limited data and low signal-
to-noise ratio in empirical asset pricing. Interactions and
nonlinear relations between variables drive the outperfor-
mance of machine learning methods. Azevedo and Hoegner
(2023) report similar results with tree-based and neural net-
work approaches. Their machine learning methods uncover
interaction effects challenging traditional risk-based expla-
nations in asset pricing. Neural network models utilize 299
stock market anomalies to achieve monthly out-of-sample re-
turns 1% higher than a linear benchmark. Linear regressions
are easy to interpret but underperform their machine learn-
ing models using statistical significances and returns.

Most recent literature uses technically more advanced
machine learning strategies. Azevedo et al. (2024) examine
the expected returns of deep learning strategies. Their long
short-term memory (LSTM) models yield net returns of up to
1.42% per month, even after accounting for the recent era of
high liquidity, transaction costs, and post-publication decay.
Strategies combining several machine learning models con-
stantly achieve significant returns after cost. Cost mitigation
techniques reduce turnover and trading costs but do not im-
prove net performance. L. Chen et al. (2024) combine three
deep neural network models with no-arbitrage constraints
to estimate asset pricing models for US stocks. Incorporat-
ing specific domain knowledge into the technical implemen-
tation enhances prediction accuracy and out-of-sample per-
formance. Their deep learning strategies with no-arbitrage
constraints outperform other machine learning benchmarks
in Sharpe ratio and identify the core variables driving asset
prices.

Other research focuses on using machine learning to pre-
dict stock returns not only in the US but globally. Tobek
and Hronec (2021) aggregate 153 anomalies across global
markets into one mispricing signal using machine learning.
Their strategy outperforms linear models out-of-sample in
various international markets. Extending the training sam-
ple with international data does not improve out-of-sample
performance for the US market. However, machine learning
models trained on US stocks perform well in markets outside
the US. Cakici et al. (2023) investigate machine learning’s
cross-sectional return predictability across 46 global stock
markets. Combining predictions from multiple machine
learning models delivers robust out-of-sample returns across
diverse markets. Developed markets show higher profitabil-
ity than emerging ones. Firm size and idiosyncratic risk are
the most important variables for predictions, with higher
returns in smaller firms and markets with more idiosyncratic
risk. Azevedo et al. (2023) also focus on the out-of-sample
performance of different machine learning models across an
international data sample. Neural networks and composite
predictors perform the best. These models achieve signif-
icant monthly long-short returns of around 2%. Portfolio
returns remain significant even after transaction costs and
outperform linear benchmark models. Drobetz and Otto
(2021) use machine learning strategies to predict European
stock returns. Like in the US market, machine learning

models outperform traditional linear models by capturing
nonlinearities and variable interactions. Neural networks
and classification-based approaches perform best and gener-
ate significant returns even after transaction costs. Support
vector machines, which classify stocks into decile portfolios,
deliver even higher returns by eliminating the noise of ex-
pected returns at the stock level. Leippold et al. (2022) apply
machine learning models to the Chinese stock market. In a
market dominated by retail investors, liquidity and volatility
indicators have predictive power over traditional variables
like valuation ratios. Neural networks perform best, particu-
larly for small-cap and non-state-owned firms. They achieve
higher predictability in China than in the US due to distinct
asset pricing dynamics driven by local investor behavior.
Hanauer and Kalsbach (2023) assess various machine learn-
ing models for predicting stock returns in a broad sample of
emerging markets. Like in developed markets, their mod-
els identify nonlinearities and interactions among variables.
Tree-based methods and neural networks deliver superior
long-short returns and alphas over linear models. Efficient
trading rules ensure machine learning predictions outper-
form even after transaction costs, short-selling constraints,
and limiting the sample to big stocks.

Despite the strong performance of machine learning mod-
els for stock market prediction, there are still problems in
implementing them in practice. Rasekhschaffe and Jones
(2019) focus on mitigating overfitting in machine learning
models. Feature engineering and forecast combinations de-
crease the risk of overfitting. These techniques increase the
signal-to-noise ratio and produce more robust predictions.
Avramov et al. (2023) criticize high limits-to-arbitrage en-
vironments and exclude stocks like microcaps and distressed
firms. Machine learning portfolios often rely on long and
short positions that are impossible in practice. The profitabil-
ity of machine learning strategies is reduced when trading
costs are considered due to high turnover. The authors pro-
pose including trading costs in machine learning models and
imposing economic restrictions. Blitz et al. (2023) report the
impact of varying prediction horizons in machine learning
models for stock return predictions. While one-month fore-
casts yield high gross returns, the net returns considering
transaction costs are minimal after 2004. Machine learning
models with longer prediction horizons provide significant
net alpha due to reduced portfolio turnover. One-month fore-
casts rely on short-term price signals, whereas longer hori-
zon predictions rely more on value-oriented signals. Aligning
the design of machine learning models with trading horizons
enhances profitability through reduced turnover and better
after-cost performance.

In this thesis, I focus on sector-specific versus global
machine learning models. Therefore, it is appropriate to
consider prior research on the relation between industry-
specific and market predictions. This includes traditional
methods of predicting the cross-section of stock returns, like
factor investing and other linear regression models. Kim et
al. (2013) enhance the linear residual income model (RIM)
with industry-specific factors using the value-to-book (V/B)
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ratio. Decomposing V/B into industry-specific components
better predicts future abnormal returns and outperforms tra-
ditional RIM implementations. Their industry-adjusted RIM
model provides superior predictive accuracy for abnormal
returns compared to conventional valuation measures. Liu
et al. (2014) analyze the predictive power of industry ef-
fects in option-implied volatility measures on stock returns.
Industry-neutral portfolios outperform full-universe port-
folios with higher Sharpe ratios and lower downside risk.
Cavaglia et al. (2006) explore region-neutral and industry-
neutral value portfolios. Industry-neutral portfolios offer
more stable returns and higher information ratios due to
lower volatility and less cyclicality. They capture the global
value premium more effectively and provide a better risk-
return profile.

Modern machine learning models also capture econom-
ically meaningful interdependencies among industries. Ra-
pach et al. (2019) examine cross-industry return predictabil-
ity with machine learning models like LASSO. Due to gradual
information diffusion, lagged returns from industries like fi-
nancial and commodity sectors can predict returns in other
sectors. An industry-rotation strategy based on these cross-
industry signals outperforms linear methods. Ciner (2019)
uses a random forest model as a machine learning strategy
to predict market returns with industry returns. Industry re-
turns provide significant out-of-sample predictive power for
the market index. Random forests outperform traditional
linear models due to their capacity to capture both linear
and non-linear dynamics. Industry-level information fore-
casts market movements in a way that linear models fail to
capture.

This thesis extends the existing literature on machine
learning in empirical asset pricing by integrating it with
industry-specific strategies. Building upon the work of Gu
et al. (2020), I use neural networks as well-performing ma-
chine learning models to forecast the cross-section of stock
returns for the US market. I compare long-short portfolio
returns achieved by sector-specific models with those of a
global model.

3. Data

3.1. Stock data
My sample includes all US stocks listed on the NYSE,

AMEX, and NASDAQ. The sample period runs from July
1963 to December 2022. I source equity returns and other
stock market data from CRSP. Accounting data to replicate
the Fama and French (2015) five-factor model is from Com-
pustat.

I calculate monthly excess returns as the one-month stock
return from CRSP over the risk-free rate provided on Kenneth
R. French’s homepage.1 To predict the cross-section of stock
returns, I subtract the monthly cross-sectional median excess

1 See http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_lib
rary.html (2024).

return from the monthly excess return for each stock. “Re-
turns” throughout this thesis denote these relative monthly
stock returns with the market component already removed.

The input variables to the machine learning models come
from A. Y. Chen and Zimmermann (2022). I download the
August 2023 version of signals from their Open Source Asset
Pricing (OSAP) website.2 This includes 209 firm-level char-
acteristics replicated from the academic asset pricing litera-
ture. I use the terms variables, signals, and characteristics
interchangeably throughout this thesis.

In addition to the 209 signals from the OSAP data, I define
three input variables from CRSP data. Short-term reversal is
the prior one-month return, Price is the natural logarithm of
the CRSP price data field, and Size is the natural logarithm
of the price multiplied by the shares outstanding.

All input variables are signed so that higher values corre-
spond to higher expected returns. Following Gu et al. (2020),
Blitz et al. (2023) and other recent literature, I rank all input
variables cross-sectionally for each month into the interval of
[-1,1]. This helps neural network models deal with varying
ranges of values and different variances across the signals
during training. Missing values are filled with the monthly
cross-sectional median rank.

I follow Hou et al. (2020) and Blitz et al. (2023) and ex-
clude microcaps from my sample to prevent them from driv-
ing my results. I define microcaps as all stocks with a monthly
market capitalization below the 20th percentile of the NYSE
market capitalization in that month.

After excluding microcaps, my full sample from July
1963 to December 2022 includes approximately 1.3 million
monthly stock observations with a monthly average of 1842
stocks.

3.2. Sector data
To train sector-specific machine learning models, I assign

all stocks in my sample to sectors according to the Global
Industry Classification Standard (GICS) from MSCI and S&P.
I categorize stocks into ten sectors defined by GICS: Energy,
Materials, Industrials, Consumer Discretionary, Consumer
Staples, Health Care, Financials, Information Technology,
Communication Services, and Utilities. Due to the small
number of observations, I include the Real Estate sector in
the Financials sector. This corresponds to the GICS classifi-
cation before 2016, better representing the biggest part of
my sample period.

I prefer the GICS over the Standard Industrial Classifica-
tion (SIC) system often used in other literature on industry
specifics. The GICS is the more modern industry taxonomy
with a stronger focus on new industries like the computer,
software, and information technology sectors.

I source data on SIC industry classification from CRSP
and data on GICS sector classification from Compustat. GICS
data has weaker coverage than SIC data, particularly from

2 See https://www.openassetpricing.com/august-2023-data-release/
(2023).

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://www.openassetpricing.com/august-2023-data-release/
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the beginning of my sample until 1985. Therefore, I develop
a mapping from SIC industries to GICS sectors described in
Table 1. If a monthly stock observation is not assigned to a
sector under GICS but to a SIC industry, I fill in the missing
GICS classification based on the mapping in Table 1.

The mapping is based on two different inputs. First, I con-
sider overlaps between the SIC and GICS classifications for
stock observations with both data points in my sample. For
example, 90% of all stocks classified as Financials in SIC are
also classified as Financials in GICS. Similarly, over 80% of all
stocks classified as utilities in SIC are also classified as Utili-
ties in GICS. Second, I consider the definitions of the industry
taxonomy in both classification systems.3 For example, SIC
includes transportation, communications, electric, gas, and
sanitary services in one Division. GICS classifies Transporta-
tion as an industry group in the sector Industrials, commu-
nications belong to the sector Communication Services, and
electric, gas, and sanitary services belong to the sector Util-
ities. This enables me to map the corresponding SIC major
groups to the GICS sectors.

Table 1 includes the ten GICS sectors used for sector-
specific machine learning models. It summarizes all SIC digit
codes and the corresponding industry description mapped to
each GICS sector. For example, I map the SIC codes 1200-
1399 (Major Group Coal Mining and Major Group Oil And
Gas Extraction) and 2900-2999 (Major Group Petroleum Re-
fining And Related Industries) to the GICS sector Energy. The
SIC industries mapped to a GICS sector can be either entire
Divisions (determined by a capital letter) or more detailed
Major Groups (determined by the first two digits) and Indus-
try Groups (determined by the first three digits).

If I recognize no clear relationship between a SIC industry
and GICS sectors, then I don’t include this SIC industry in the
mapping. A stock with missing GICS data and a SIC code not
contained in the mapping will not be assigned to a GICS sec-
tor. The same happens to stocks with missing data for both
classification systems. After applying the mapping, 15,239
out of 1.3 million monthly stock observations in the full sam-
ple are not assigned to a GICS sector. They are included in
the training data for the global neural network but not in the
training data for the sector-specific neural networks.

4. Methodology

4.1. Return prediction using machine learning
My methodology follows Gu et al. (2020) and Hanauer

and Kalsbach (2023), with the difference that I train one
global model and one sector-specific model for each of the
ten GICS sectors.

I aim to predict the cross-section of US stock returns, so
I forecast the outperformance of a stock relative to the US
stock market. The relative return of a stock is defined as

3 See https://www.msci.com/our-solutions/indexes/gics for GICS defini-
tions and https://www.osha.gov/data/sic-manual for SIC definitions.

r rel
i,t = ri,t −Mkt t , (1)

where ri,t is the excess return of stock i in month t and Mkt t
is the cross-sectional median excess return across all stocks
in the sample in month t.

I describe the one-month-ahead relative return of a stock
r rel

i,t+1 as an additive prediction error model:

r rel
i,t+1 = Et

�

r rel
i,t+1 | x i,t

�

+ εi,t+1. (2)

Et[r rel
i,t+1|x i,t] is the conditional expected relative return

of stock i in month t for month t + 1. It is conditional as
it depends on x i,t ∈ Rp, a vector of stock-specific p input
variables known at month t. εi,t+1 is the prediction error
term.

I estimate the expected relative return with the unknown
function f ∗, f ∗ : Rp → R. It estimates the expected return
depending only on the vector of p stock-specific input vari-
ables available in month t:

Et

�

r rel
i,t+1 | x i,t

�

= f ∗(x i,t). (3)

In the case of neural networks, the unknown function
f ∗(x) is approximated by a nonlinear function f (x ,θ ,ρ).
This function is parametrized by a vector of coefficients θ
and a set of hyperparameters ρ. When training neural net-
works, the coefficients θ are estimated from the training data
with respect to the hyperparameters ρ and a predefined loss
function L. The hyperparameters ρ are optimized concern-
ing the loss function L based on the estimated coefficients θ
and available data.

Neural networks as a form of supervised machine learn-
ing outperform linear models in prior literature (Azevedo &
Hoegner, 2023; Gu et al., 2020). Therefore, I choose three-
layer neural networks as the machine learning model for this
thesis. Appendix A4 describes the model architecture and
hyperparameters used to train the neural networks. In ad-
dition, I later use ordinary least squares (OLS) models as a
benchmark for sector-specific neural networks.

The global neural network model takes the full sample of
1.3 million monthly stock observations as input. The sector-
specific machine learning models for the ten GICS sectors
take all monthly stock observations assigned to the respec-
tive GICS sector as input. Therefore, the samples used to
train the sector-specific neural networks differ significantly
in their number of observations, depending on the sector’s
size.

To avoid data leakage, I divide all input samples into three
disjoint time periods, which always keep the temporal order-
ing of the data: the training, validation, and testing samples.
First, I estimate the neural network coefficients for a range
of hyperparameter values on the training sample. The vali-
dation sample compares the loss function results for each set
of hyperparameters based on the estimated model from the

https://www.msci.com/our-solutions/indexes/gics
https://www.osha.gov/data/sic-manual
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Table 1: Mapping of SIC to GICS industries

This table maps industries classified under the Standard Industrial Classification (SIC) system to sectors classified under the Global Industry Classification
Standard (GICS) system used in this thesis. The first column contains the 11 different sectors of the GICS system. Throughout this thesis, the 11th sector,
Real Estate, is not considered separately, but is included in the Financials sector. The second and third columns contain the SIC industries mapped to the
GICS sector in the first column. The second column contains the SIC digit code, and the third includes the corresponding industry description. The SIC

industries mapped to a GICS sector can be either entire Divisions (determined by a capital letter) or more detailed Major Groups (determined by the first
two digits) and Industry Groups (determined by the first three digits). This mapping is used to classify individual stocks into sectors when GICS sector

information is unavailable in Compustat. If a SIC industry classification is available, the GICS sector is added according to this mapping. If no SIC
classification is available either, the GICS sector value is ’Missing’, and the stock is not included in the training data for the sector models.

GICS Sector SIC Code SIC Description

10 - Energy 1200–1399 Coal Mining and Oil/Gas Extraction

2900–2999 Petroleum Refining and Related Industries

15 - Materials Division B 1000–1499
(excluding 1200–1399)

Mining (excluding Coal Mining and Oil/Gas Extraction)

2400–2499 Lumber and Wood Products, Except Furniture

2600–2699 Paper and Allied Products

3300–3399 Primary Metal Industries

20 - Industrials Division C 1500–1799 Construction

Division E 4000–4999
(excluding 4800–4999)

Transportation (excluding Communications and Utilities)

Division J 9100–9999
(excluding 9900–9999)

Public Administration (excluding Nonclassifiable Establishments)

3400–3499 Fabricated Metal Products, Except Machinery and Transportation
Equipment

3500–3599 Industrial and Commercial Machinery

7320–7329 Credit Reporting and Collection

7340–7349 Services to Dwellings and Other Buildings

7360–7369 Personnel Supply Services

7390–7399 Miscellaneous Business Services

7500–7599 Automotive Repair Services and Parking

7600–7699 Miscellaneous Repair Services

8710–8719 Engineering Architectural and Surveying Services

8740–8749 Management and Public Relations

8900–8999 Services Not Elsewhere Classified

25 - Consumer
Discretionary

Division G 5200–5999
(excluding 5400–5499)

Retail Trade (excluding Food Stores)

Division F 5000–5199
(excluding 5140–5189,
5180–5189)

Wholesale Trade (excluding Groceries and Beer, Wine, and Distilled
Alcoholic Beverages)

1500–1599 Building Construction General Contractors and Operative Builders

2200–2299 Textile Mill Products

2300–2399 Apparel and Other Finished Products Made from Fabrics and Similar
Materials

2500–2599 Furniture and Fixtures

3100–3199 Leather and Leather Products
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Table 1 — continued

GICS Sector SIC Code SIC Description

25 - Consumer
Discretionary

3900–3999 Miscellaneous Manufacturing Industries

7000–7099 Hotels, Rooming Houses, Camps, and Other Lodging Places

7200–7299 Personal Services

7800–7899 Motion Pictures

7900–7999 Amusement and Recreation Services

30 - Consumer Staples Division A 0100–0999 Agriculture, Forestry, and Fishing

2000–2199 Food Products and Tobacco Products

5140–5159 Wholesale Trade - Groceries

5180–5189 Wholesale Trade - Beer, Wine, and Distilled Alcoholic Beverages

5400–5499 Food Stores

35 - Health Care 2800–2899 Chemicals and Allied Products (including Drugs)

3840–3849 Surgical Medical and Dental Instruments and Supplies

3850–3859 Ophthalmic Goods

8000–8099 Health Services

8300–8399 Social Services

8730–8739 Research Development and Testing Services

9900–9999 Nonclassifiable Establishments

40 - Financials Division H 6000–6799 Finance, Insurance, and Real Estate

45 - Information
Technology

3570–3579 Computer and Office Equipment

3600–3699 Electronic and Other Electrical Equipment and Components

3820–3829 Laboratory Apparatus and Analytical Optical Measuring and Controlling
Instruments

7370–7379 Computer Programming Data Processing

50 - Communication
Services

4800–4899 Communications

55 - Utilities 4900–4999 Electric, Gas, and Sanitary Services

60 - Real Estate Included in GICS sector 40 - Financials

training sample. The optimal hyperparameter set minimizes
the loss function on the validation sample and is then used
to retrain five different neural networks on the training sam-
ple. I use these five models to predict the monthly returns
for the test sample. The final prediction for each stock is the
average over the five individual model predictions to reduce
the variance in single forecasts.

Following the training approach as in Gu et al. (2020)
and Blitz et al. (2023), I retrain the models once at the end
of every year but predict every month using the latest model
and data. The first 18 years of my sample (July 1963 to De-
cember 1981) are the first training sample, and the next 12
years (January 1982 to December 1993) the first validation
sample. The first one-year test sample is the following 12
months, so the first out-of-sample (OOS) prediction is made
for January 1994. To predict the monthly returns from Jan-

uary 1995 to December 1995, I extend the training sample by
one year (July 1963 to December 1982) and roll forward the
validation sample by one year (January 1983 to December
1994). I repeat this procedure for each year in my sample.
No future information is leaked from a previous period.

To evaluate the predictive performance for individual
stock return forecasts on the test sample, I use the pooled
out-of-sample R2

OOS defined by Gu et al. (2020):

R2
OOS = 1−

∑T
t

∑N
i

�

r rel
i,t − r̂ rel

i,t

�2

∑T
t

∑N
i

�

r rel
i,t

�2 . (4)

This metric compares the out-of-sample forecasts with a
naive forecast of zero, better suited to individual return pre-
dictions than the typical forecast with mean returns.
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4.2. Variable importance
As a primary measure to interpret the results of the ma-

chine learning models, I rank the respective input variables
according to their variable importance. This aims to identify
characteristics that influence the cross-section of expected re-
turns. Following Gu et al. (2020) and Blitz et al. (2023), I
define variable importance as the reduction in panel predic-
tive out-of-sample R2

OOS . For each annually trained neural
network, I iteratively set the values for each input variable to
zero while holding the model estimates fixed. In each iter-
ation, I predict new monthly returns for the respective one-
year test sample and calculate the change in out-of-sample
R2

OOS . I use the average variable importance across each an-
nually trained model to rank each feature where rank one
is the most important characteristic. To determine the rela-
tive importance of individual variables for the performance of
each model, I normalize variable importance within a model
to sum to one. If setting a signal to zero increases the panel
predictive out-of-sample R2

OOS , the variable importance mea-
sure for that signal is negative. Therefore, the normalized
variable importance of other signals within a model can be
greater than 1.

4.3. Machine learning portfolios
Portfolio performance is my primary metric for evaluat-

ing the forecast performance of machine learning models. At
the end of each month, each model produces a prediction of
a stock’s next month’s relative return r̂ rel

i,t+1. Based on these
forecasts, I sort stocks from highest to lowest predicted re-
turn and assign them into decile portfolios using NYSE break-
points.4 I reassign and rebalance portfolios at the end of
each month. I compute value-weighted returns from hold-
ing the decile portfolios over the next month to avoid small
stocks driving the results. Finally, I construct a zero-net in-
vestment (long-short) portfolio that goes long in the high-
est decile portfolio (decile 10) and short in the lowest decile
portfolio (decile 1).

I evaluate the predictive performance of three different
machine learning strategies. The first strategy forms decile
portfolios based on the predictions of the global neural net-
work model. The second strategy forms decile portfolios with
sector-neutral portfolio sorts based on the global neural net-
work model predictions. This means each sector gets individ-
ual breakpoints for the decile sorts. The third strategy forms
decile portfolios based on the predictions from the sector-
specific neural networks. First, I perform portfolio sorts for
each sector individually based on the respective model fore-
casts. Then, I combine the sector-specific decile portfolios
into single decile portfolios. For example, the top decile port-
folio for month t contains all stocks from the ten top decile
portfolios across all sectors in month t.

4 Breakpoints for the decile sorts are first determined using only stocks
listed on the NYSE. All stocks are then sorted into decile portfolios based
on these breakpoints, regardless of which exchange they are listed on. As
the NYSE contains stocks with larger average market capitalizations, this
reduces the influence of small stocks on the portfolio sorts.

To compare the results of the three neural network port-
folio sorts, I provide each decile portfolio’s average predicted
returns, realized returns, and Sharpe ratios. I compute mean
returns and associated t-statistics for the long-short portfolios
of each machine learning strategy. To benchmark the long-
short returns, I consider the adjusted R2-value and alphas
from the Capital Asset Pricing Model (CAPM) and Fama and
French (2015) five-factor model with their associated Newey
and West (1987) adjusted t-statistics using six lags. The fac-
tors are based on the same sample of 1.3 million monthly
stock observations as the neural network portfolios.

Finally, I benchmark the predictive performance of the
sector-specific neural networks with OLS models in Sec-
tion 5.4. The portfolio sorts work similarly but are based
on predictions from sector-specific OLS models. All sector
models mentioned outside of Section 5.4 always refer to
sector-specific neural networks.

5. Empirical results

5.1. Prediction performance
The global neural network dominates the sector-specific

neural networks in out-of-sample predictive performance for
individual stock return forecasts. On the full sample over the
out-of-sample period from January 1994 to December 2022,
the global model achieves a monthly R2

OOS of 3.37%. The sec-
tor models achieve a monthly R2

OOS of -6.06%, so they under-
perform a naive forecast of zero for all monthly stock returns.
Across all ten GICS sectors, the global model outperforms the
respective sector model. Sector models perform particularly
worse for sectors with only a small sample size.

Table 2 compares the monthly out-of-sample stock-level
prediction performance across all ten GICS sectors between
the global model and the ten sector-specific models. The sec-
tor performance for the global model is determined by fil-
tering the out-of-sample predictions of the global neural net-
work for the respective sector stocks. In addition, Table 2 in-
cludes the average monthly observations per sector over the
full sample period from July 1963 to December 2022. This
demonstrates the sample size for each sector.

The global model produces positive R2
OOS statistics across

all individual sectors. Taking the full sample of stocks, the
global model achieves a R2

OOS of 3.37%. Therefore, the pre-
dictions consistently outperform a naive forecast of zero to
all stocks in all months over the out-of-sample period. Except
for Utilities, the R2

OOS statistics for all sectors are larger than
2%. Over six out of ten sectors the global model produces
R2

OOS above 3%, with the highest value at 4.57% for the sec-
tor Health Care. Utilities appear to be an outlier with 0.11%,
more than an order of magnitude smaller than the R2

OOS for
all other sectors. There is no correlation between the sectors’
sample size and the predictive performance of the global neu-
ral network. The model achieves a R2

OOS of 3.11% on Com-
munication Services, the sector with the smallest sample size
and only an average of 58 stocks per month in the sample.
This is more than the 2.26% for Financials, the biggest sector
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Table 2: Monthly out-of-sample stock-level prediction performance

This table summarizes the monthly out-of-sample stock-level prediction performance across all GICS sectors using the global model and the respective neural
network sector models. Panel A reports the monthly R2

OOS statistics of the global model and the respective neural network sector models for the full sample
over the out-of-sample period from January 1994 to December 2022. The third column in Panel A reports the average monthly stocks per sector in the full

sample over the full sample period from July 1963 to December 2022. The sample consists of US CRSP stocks, excluding microcap stocks with a market
capitalization smaller than the 20th percentile of stocks listed on the NYSE. Panel B provides a visual comparison of the monthly R2

OOS statistics in Panel A.

Panel A: Percentage R2
OOS

Sector Global Model Sector Models Avg. monthly observations

Energy 3.49 -12.79 107

Materials 3.23 -1.92 136

Industrials 3.07 2.21 293

Consumer Discretionary 2.86 2.17 286

Consumer Staples 2.47 -14.11 113

Health Care 4.57 -0.36 184

Financials 2.26 1.18 306

Information Technology 3.43 -9.17 223

Communication Services 3.11 -53.07 58

Utilities 0.11 -21.85 113

All stocks 3.37 -6.06 1842

Panel B: Visual comparison of R2
OOS statistics

with a mean of 306 monthly stock observations in the sam-
ple.

The sector-specific neural networks perform significantly
worse than the global model across the whole sample of
stocks. Sector models produce negative R2

OOS in seven out
of ten sectors. The R2

OOS statistic on the full sample is also
negative with -6.06%. This means a naive forecast of zero
to all stocks in all months dominates the sector models over
the full sample. The sector neural networks achieve positive
R2

OOS only in the sectors Industrials, Consumer Discretionary
and Financials. These are the three biggest sectors by sam-
ple size, with around 300 stock observations per month. The
models perform poorly in all sectors with only a small sample
size. Sectors like Energy, Consumer Staples, Communication
Services, and Utilities are the smallest sectors, with monthly

stock observations in the range from 58 to 113, and all pro-
duce two-digit negative R2

OOS . Communication Services has
only half of the sample size compared to the next bigger sec-
tor, and the respective sector model performs by far the worst
with a R2

OOS of -53.07%. Information Technology is an ex-
ception with 223 average monthly stock observations and a
negative R2

OOS of -9.17
Based on the correlation between sector size and sec-

tor model performance, complex nonlinear machine learning
models like neural networks might not be suited for small
samples. The number of coefficients estimated in a neural
network rapidly expands with 212 input signals. Therefore,
the observations-to-parameters ratio is particularly small in
sectors with a small sample size. Pooling all sectors as input
for the global neural network improves the observations-to-
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parameters ratio. This motivates benchmarking the sector
neural networks against sector OLS models in Section 5.4.

Panel B of Table 2 visualizes the negative outliers in the
predictive performance of the sector models. The global
neural network achieves a constant positive R2

OOS in a sim-
ilar range over the whole sample. The sector neural net-
works never dominate the global model and produce appar-
ent downward deviations that stand out from the range of
other values.

5.2. Variable importance
The neural network models with the best out-of-sample

prediction performance share most of their most important
variables. Size is the most influential signal in predicting
returns in the global model and across most sector models.
Neural networks tend to perform well in out-of-sample return
forecasts if their relative importance is skewed towards Size.
Risk measures, liquidity variables, and recent price trends are
other important characteristics in well-performing models.
Sector models with a broader set of influential characteris-
tics underperform out-of-sample.

I examine the importance of individual input signals in
predicting returns with neural network models. To determine
variable importance, I calculate the reduction in R2

OOS from
setting all values of a particular signal to zero while keeping
all other model estimates fixed. This process is repeated it-
eratively over all variables for each model. The average over
all annual test samples results in a single importance measure
per model for each variable.

Figure 1 visualizes each neural network model’s variable
importance of the top 20 stock-level signals. This includes
the global model and sector-specific models for each of the
ten GICS sectors. Variable importances within a model are
normalized to sum to one, giving them the interpretation of
relative importance for that model.

Figure 2 reports overall rankings of variable importance
across the 100 most influential characteristics for all neural
network models. I rank the importance of individual signals
for each model (with rank one as the most important) and
then sum up their ranks. Variables in Figure 2 are ordered
so that the highest total ranks are at the top, and the lowest-
ranking characteristics are at the bottom. A darker color in a
column indicates a higher importance of the respective vari-
able for the individual model.

The most essential variables are similar among many of
the neural networks. Analogous to Blitz et al. (2023), Size
is the most influential variable overall. It is first in overall
ranks and has the highest relative importance for the predic-
tive performance of nine models. It dominates all other vari-
ables by a large margin. Except for Consumer Staples (sta-
ples), the relative importance is highly skewed towards Size
in all models where it is the most influential variable. Sec-
tor models for Communication Services (comm) and Utilities
(utilities) are the only ones without Size as the most impor-
tant signal. They are more democratic and draw information
from a broader set of predictive variables. However, they

underperform all other models in predictive performance, as
seen in Table 2. Neural networks tend to perform better out-
of-sample in Table 2 when the relative importance in Figure 1
is skewed towards Size.

The best-performing sector models like Industrials (indus-
trials), Consumer Discretionary (discretionary), and Finan-
cials (financials) focus on the same set of influential variables
as the global model (global). Besides the most important
signal Size, this includes Idiosyncratic risk (IdioVolAHT, Idio-
Vol3F) and Realized Volatility (RealizedVol) as risk measures;
Amihud (2002) illiquidity (Illiquidity) and Volume Variance
(VolSD) as liquidity variables; Short-term Reversal (STrever-
sal) and Trand Factor (TrendFactor) as recent price trends;
and to a lesser extent valuation ratios and fundamental sig-
nals like earnings-to-price (EP) and sales-to-price (SP).

Looking at Figure 2, the highest-ranked characteristics
are the ones that achieve solid relative importance across all
models. The four top-ranked signals are Size, Institutional
Ownership and Idiosyncratic Volatility from Nagel (2005)
(RIO_Volatility), Short-term Reversal, and Price. They are
among the top-ranked variables in many individual models.
However, the following top 25 ranked characteristics do not
belong to top-ranked variables in any particular model but
instead stay at least relatively important throughout all mod-
els. Forecasting power for the rest of the 100 most influen-
tial variables in Figure 2 is more heterogeneously distributed.
The signals achieve high importance for the predictive power
of some individual models but are not relevant in others. For
example, risk measures like Idiosyncratic risk and Realized
Volatility are among the top signals in the global model and
parts of the sector models but irrelevant to the R2

OOS of other
sector models.

5.3. Neural network portfolios
Portfolio strategies based on the global model’s sorted

out-of-sample predictions outperform the sector-specific
models. A long-short portfolio based on the global model’s
forecasts achieves an average monthly out-of-sample return
of 2.71% and an annualized Sharpe ratio of 2.07. The port-
folio strategy is profitable throughout the out-of-sample pe-
riod and generates significant alphas over established factor
models. The outperformance of the global neural network is
particularly strong from the beginning of the out-of-sample
period through to the early 2000s. The sector neural net-
works predict very extreme portfolio returns but achieve
significantly lower returns than the global model. A long-
short portfolio based on the forecasts of the sector models
has an out-of-sample monthly return of 0.99% and an annu-
alized Sharpe ratio of 1.14. The portfolio strategy generates
small alphas on top of the factor models but performs unre-
liably in the first half of the out-of-sample period and only
starts to recover thereafter.

After comparing the predictive ability of the global model
versus the sector models for individual stock returns in Sec-
tion 5.1, I assess the profitability of portfolios based on the
sorted predictions from my neural networks trained to fore-
cast out-of-sample returns. Each neural network produces
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Figure 1: Variable importance by model

This figure plots the variable importance for each model’s top 20 most influential characteristics. This includes the global model (global) and all ten sector
models (GICS sectors Energy (energy), Materials (materials), Industrials (industrials), Consumer Discretionary (discretionary), Consumer Staples (staples),
Health Care (health), Financials (financials), Information Technology (tech), Communication Services (comm) and Utilities (utilities)). Variable importance

is an average over all training samples. Variable importances within a model are normalized to sum to one, giving them the interpretation of relative
importance for that model. As variable importances within a model can be negative, the normalized variable importance for other characteristics within

that model can be greater than one. The sample consists of US CRSP stocks, excluding microcap stocks with a market capitalization smaller than the 20th
percentile of stocks listed on the NYSE. The sample runs from January 1994 to December 2022.
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Figure 1 — continued

one-month-ahead stock return predictions at the end of each
month. Based on each model’s forecasts, I sort stocks into
decile portfolios using NYSE breakpoints and reassign the
portfolios each month. I compute the value-weighted rel-
ative returns of holding the decile portfolios over the next
month. In the end, I construct a long-short portfolio with
zero net investment. The long-short portfolio buys the high-
est expected return stocks (decile 10) and sells the lowest
(decile 1).

I evaluate three portfolio strategies to compare the prof-
itability of the global model versus the sector models. The
first sorts stocks into decile portfolios based on the global
model’s relative return forecasts. The second strategy per-
forms sector-neutral portfolio sorts on the global model’s re-
turn predictions. The third strategy produces decile portfo-
lios based on the forecasts of the ten sector models.

Table 3 reports the out-of-sample performance of all
value-weighted decile portfolios for the three neural net-
work strategies. The results align with the out-of-sample
predictive performance of the models on individual stock-
level in Section 5.1. The global model in Panel A again
dominates the sector models in Panel C in out-of-sample
portfolio performance.

For the global model in Panel A, the average realized rela-
tive returns (Avg) generally increase monotonically through-
out all decile portfolios from lowest (decile 1) to highest
(decile 10). Only the difference between decile nine and the
top decile is significantly larger, as the return is more than
triple. The lowest decile portfolio earns a monthly value-
weighted return of -0.97%, and the highest decile portfolio
earns 1.73%. The long-short portfolio (H-L) based on the

global neural network forecasts returns on average 2.71%
per month (32.52% on an annualized basis). Its monthly
volatility (Std) is 4.52% (15.66% annualized), resulting in
an annualized out-of-sample Sharpe ratio (SR) of 2.07.

The global model with sector-neutral portfolio sorts in
Panel B produces similar results but is slightly less prof-
itable. Realized returns increase monotonically throughout
all decile portfolios from lowest to highest, with a larger gap
between decile nine and the highest decile. The most ex-
treme deciles produce lower average returns than the global
model with unrestricted portfolio sorts in Panel A but also ex-
perience lower monthly volatility. The lowest decile portfolio
earns a monthly value-weighted return of -0.82%, and the
highest decile portfolio earns 1.26%. The long-short portfo-
lio based on the global model with sector-neutral portfolio
sorts returns on average 2.08% per month (24.96% on an
annualized basis). Its monthly volatility is 3.74% (12.96%
annualized), resulting in an annualized out-of-sample Sharpe
ratio of 1.93.

Analogous to the predictive performance of the sector
neural networks out-of-sample, the portfolio strategy based
on the sector models in Panel C is significantly less profitable
than the global model. Realized relative returns no longer
monotonically increase throughout all decile portfolios from
lowest to highest. The highest decile portfolios stand out.
The ninth decile should contain the stocks with the second-
highest expected returns, but it generates a negative aver-
age monthly return of -0.08%. The top decile portfolio earns
0.53%, less than a third of the global model’s top decile
return. The lowest decile portfolio earns a monthly value-
weighted return of -0.46%, half of the global model in Panel
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Figure 2: Ranked variable importance across models

This figure presents the ranked variable importance for the 100 most influential characteristics across all models. Characteristics are ordered based on the
sum of their ranks over all models, with the most influential characteristics on top and the least influential on bottom. Columns correspond to individual
models, and color gradients within each column indicate the model’s most influential (dark blue) to least influential (white) characteristics. The sample

consists of US CRSP stocks, excluding microcap stocks with a market capitalization smaller than the 20th percentile of stocks listed on the NYSE. The
sample runs from January 1994 to December 2022.
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Table 3: Performance of neural network portfolios

This table summarizes the out-of-sample performance of decile portfolios based on three different neural network strategies. All stocks are sorted into decile
portfolios based on their predicted relative returns (with the market component removed) for the next month. The table reports value-weighted returns for

all decile portfolios and a zero-net-investment portfolio (H-L) that buys the highest expected return stocks (decile 10) and sells the lowest (decile 1). For
each portfolio, the table presents the average predicted monthly returns in percentages (Pred), the average realized monthly returns in percentages (Avg),
their standard deviations in percentages (Std), and annualized Sharpe ratios (SR). Panel A reports results for the global model. Panel B reports results for

decile portfolios based on the global model’s return predictions but with sector-neutral portfolio sorts. Panel C reports results for decile portfolios based on
return predictions from the sector models. The sample consists of US CRSP stocks, excluding microcap stocks with a market capitalization smaller than the

20th percentile of stocks listed on the NYSE. The sample runs from January 1994 to December 2022.

Panel A: Global model

Low 2 3 4 5 6 7 8 9 High H–L

Pred -1.22 -0.57 -0.27 -0.03 0.18 0.39 0.63 0.89 1.27 2.69 3.91

Avg -0.97 -0.44 -0.25 -0.08 -0.02 0.04 0.14 0.22 0.51 1.73 2.71

Std 2.85 2.13 2.25 2.10 2.26 2.17 2.32 2.84 3.20 3.35 4.52

SR -1.18 -0.71 -0.39 -0.13 -0.02 0.07 0.20 0.26 0.55 1.79 2.07

Panel B: Global model with sector-neutral portfolio sorts

Low 2 3 4 5 6 7 8 9 High H–L

Pred -1.11 -0.53 -0.26 -0.04 0.16 0.36 0.57 0.83 1.15 2.30 3.41

Avg -0.82 -0.50 -0.25 -0.21 0.00 0.07 0.11 0.21 0.39 1.26 2.08

Std 2.45 2.02 2.06 2.11 2.35 2.12 2.53 2.70 2.88 3.00 3.74

SR -1.16 -0.85 -0.42 -0.34 0.01 0.11 0.15 0.26 0.47 1.45 1.93

Panel C: Sector models

Low 2 3 4 5 6 7 8 9 High H–L

Pred -2.85 -1.32 -0.64 -0.08 0.42 0.89 1.43 2.21 3.33 6.29 9.14

Avg -0.46 -0.25 -0.15 -0.03 -0.04 -0.13 0.00 0.23 -0.08 0.53 0.99

Std 2.49 2.19 2.12 2.18 2.14 2.29 2.36 2.27 2.52 2.61 3.00

SR -0.64 -0.40 -0.25 -0.04 -0.07 -0.20 0.00 0.34 -0.12 0.70 1.14

A. The long-short portfolio based on the sector neural net-
works returns on average 0.99% per month (11.88% on an
annualized basis). Its monthly volatility is 3.00% (10.39%
annualized), resulting in an annualized out-of-sample Sharpe
ratio of 1.14.

Across the three strategies, the predicted out-of-sample
returns (Pred) do not match the realized returns (Avg) very
closely, except for the pattern of increasing returns through-
out the deciles. The neural networks produce extreme return
forecasts for the lowest and highest decile portfolios and
overstate realized returns. This is particularly true for the
sector models in Panel C. Their predicted monthly long-short
(H-L) portfolio return based on neural network forecasts
amounts to 9.14%, almost an order of magnitude larger than
the realized return of 0.99%. The effect is less pronounced
in the global model in Panel A. It predicted a monthly return
of 3.91% for the long-short portfolio, compared to a realized
return of 2.71%. The overly extreme portfolio return pre-
dictions by the sector models can be caused by overfitting.
As demonstrated by the results in Section 5.1, the complex
neural networks struggle with sector-specific out-of-sample

predictions on small sample sizes and low observations-to-
parameter ratios.

Table 4 reports further statistics on the out-of-sample per-
formance of the three neural network strategies, focusing on
the long-short portfolio returns. Panel A compares long-short
portfolio returns across different out-of-sample periods. The
average monthly returns over the full out-of-sample (OOS)
period from January 1994 to December 2022 are the same
as reported in Table 3. I further show mean returns over two
subsamples: the first half of the out-of-sample period from
January 1994 to December 2008 and the second half from
January 2009 to December 2022. Panel A additionally re-
ports associated t-statistics (t-stat).

The global model achieves statistically significant mean
returns over the entire out-of-sample period and both sub-
samples. Long-short portfolios for the global model with un-
restricted portfolio sorts outperform sector-neutral portfolio
sorts over both subsamples. More importantly, the global
neural network dominates the sector-specific models in all
samples, both in terms of mean return and risk-return profile
based on the associated t-statistics. However, its outperfor-
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Table 4: Statistics of neural network long-short portfolios

This table summarizes the out-of-sample statistics of the value-weighted long-short portfolios formed from different neural network model return
predictions. All stocks are sorted into decile portfolios based on their predicted relative returns (with the market component removed) for the next month.

A long-short portfolio buys the highest expected return stocks (decile 10) and sells the lowest (decile 1). Results are reported for the global model, the
global model with sector-neutral portfolio sorts, and the sector models. Panel A presents the average value-weighted monthly full sample mean return and

average monthly sub-sample mean returns with associated t-statistics (t-stat). Panel B reports the average CAPM alphas and average Fama and French
(2015) five-factor model (FF5) alphas, corresponding Newey and West (1987) adjusted t-statistics with six lags (t-statα), and corresponding R2. The sample

consists of US CRSP stocks, excluding microcap stocks with a market capitalization smaller than the 20th percentile of stocks listed on the NYSE. The
sample runs from January 1994 to December 2022.

Global model Global model +
sector-neutral sorts

Sector models

Panel A: Percentage returns

Mean 1994–2022 2.71 2.08 0.99

t-stat 11.16 10.36 6.14

Mean 1994–2008 3.24 2.66 0.70

t-stat 9.55 9.08 3.06

Mean 2009–2022 2.14 1.46 1.29

t-stat 6.24 5.49 5.80

Panel B: Risk-adjusted performance

CAPM alpha (%) 2.57 2.00 0.98

t-statα 8.80 9.55 5.78

R2 0.03 0.02 -0.003

FF5 alpha (%) 2.44 1.90 0.85

t-statα 8.80 8.78 5.98

R2 0.14 0.12 0.04

mance is significantly more substantial in the first half of the
out-of-sample period, when it earns more than four times as
much as the sector neural networks.

The global model performs better from 1994 to 2008
with a 3.24% monthly long-short return and an associated
t-statistic of 9.55 compared to a 2.14% return from 2009 to
2022 with an associated t-statistic of 6.24. This is analogous
to the results of Blitz et al. (2023), who find a weaker out-
of-sample performance for machine learning models in their
later subsample after 2004. They base this result partly on
the strength of the Size factor over different time periods.
Size is the most important predictor for returns in my global
neural network. According to Blitz et al. (2023), the stronger
performance of the global model in the earlier subsample can
be attributed to the excellent performance of the Size factor
in earlier periods. The Size factor starts to perform worse
in the last 20 years, which weakens the profitability of the
global neural network in the second subsample.

The long-short portfolio based on the sorted predictions
of the sector models underperforms the global model, partic-
ularly in the first half of the out-of-sample period. It achieves
a monthly mean return of 0.7% with an associated t-statistic
of 3.06. Although still less profitable than the global model,
the sector-specific neural networks improve in the second

subsample with an average return of 1.29%. Associated t-
statistics are not far apart, with 5.80 for the sector models
and 6.24 for the global model. Therefore, both strategies are
similar in risk-return profile over the second half of the out-
of-sample period.

Two factors can drive the improved performance of the
sector models in the later period of the sample. First, not all
sector neural networks rely on Size as an essential signal to
the same extent as the global model. Therefore, their prof-
itability is not as dependent on the performance of the Size
factor. Second, in the earlier part of the sample, the training
samples for the sector-specific neural networks are tiny, with
a very low observations-to-parameters ratio. This makes it
more challenging to estimate coefficients in a neural network
without overfitting on the training data.

Table A1 in the Appendix reports the out-of-sample per-
formance of individual GICS sector long-short portfolios
based on the sorted predictions from the ten sector-specific
neural networks.

Panel B of Table 4 summarizes the risk-adjusted perfor-
mance of the long-short portfolios for each strategy based
on factor pricing models. I report alphas on top of the Cap-
ital Asset Pricing Model (CAPM) and the Fama and French
(2015) five-factor model (FF5) with associated Newey and
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West (1987) adjusted t-statistics with six lags (t-statα) and
adjusted R2 with respect to each factor model.

The risk-adjusted performance yields similar results as
the raw long-short returns with a superior global model. All
three neural network strategies achieve statistically signifi-
cant alphas with t-statistics ranging from 5.78 for the sec-
tor models on the CAPM to 9.55 for the global model with
sector-neutral portfolio sorts on the CAPM. The global model
produces the highest alphas, with 2.57% on the CAPM and
2.44% on FF5. The sector-neutral portfolio sorts slightly
lower the alphas of the global model to 2.00% on top of the
CAPM and 1.90% on top of FF5. The sector-specific models
span the lowest alphas, with 0.98% on the CAPM and 0.85%
on FF5. The CAPM barely has any explanatory power on the
average long-short returns of neural network forecasts, with
R2 never exceeding 0.03 for the global model. The five-factor
model explains as much as 14% of the variation in the long-
short portfolio based on the global model’s forecasts. Unsur-
prisingly, the Size factor is the statistically most significant
factor in regressions of portfolio returns on the five-factor
model for all neural network strategies.

The results of Tables 3 and 4 are illustrated in Figure 3. It
plots the cumulative log returns of the value-weighted long
and short sides for the three neural network strategies in the
out-of-sample period. The long side buys the stocks in the
highest decile portfolio and the short side sells the lowest
decile portfolio. Therefore, returns on the short portfolio are
the relative returns of the lowest decile stocks multiplied by
-1. The cumulative performance is cut off in December 2008
and restarted in January 2009 to present differences in cu-
mulative returns between the two halves of the out-of-sample
period.

The global model consistently dominates the sector mod-
els over time. However, its outperformance is mainly in the
first half of the out-of-sample period and tapers off thereafter.
The cumulative returns of all three strategies follow similar
patterns in the second half of the out-of-sample period. The
long-short spreads are still larger for the global neural net-
work after 2008, but the magnitude of the returns relative
to the sector models is smaller. Sector-neutral portfolio sort-
ing prevents the global model from outperforming the sector
neural networks in the second half of the out-of-sample pe-
riod. The performance of long-short portfolios for the global
model is not predominantly based on the short side, which
would raise questions about practical implementation due to
shorting frictions.

The return series of the global model’s long portfolio is
strong initially and starts to shift after 2000. It still delivers
positive results, but with higher volatility, the overall magni-
tude of relative returns is lower. The stocks in the top decile
of the global neural network’s forecasts cumulate double the
returns in the eight years from 1994 to 2001 than in the fol-
lowing seven years. The second half of the out-of-sample
period from 2009 to 2023 accumulates roughly the same re-
turns as the first eight years. Apart from the shift in the re-
turn series during the dot-com bubble crash in 2001, global
shocks such as the financial crisis of 2008 and 2009 or the

COVID-19 pandemic in early 2020 did not cause significant
portfolio downturns.

The short side of the global model generates positive
returns but underperforms the long portfolio in both sub-
samples. Its positive performance is mainly due to the dot-
com bubble crash from 2000 to 2002. Apart from this period,
cumulative returns increase only slightly or move sideways
over extended periods in the plot.

The long and short sides of the portfolios for the global
model with sector-neutral portfolios generally follow the
same pattern. The magnitude of returns and the long-short
spread are smaller. The shift in the return series after 2000
is more pronounced, and the dot-com bubble crash causes a
portfolio downturn.

The top and bottom decile portfolios based on the sorted
predictions of the sector neural networks do not perform well
in the first half of the out-of-sample period. The long portfo-
lio generates no significant returns after 1999 and wipes out
all accumulated returns in the dot-com bubble crash. The
short portfolio benefits from this crisis but otherwise does
not generate any substantial returns. It is the only portfolio
to accumulate negative returns in parts of the out-of-sample
period. After 2008, the cumulative returns of the long and
short portfolios recover but never reach the magnitude of the
global model.

Appendix A2 plots the cumulative log returns of top and
bottom decile portfolios sorted on the out-of-sample return
forecasts of individual sector-specific neural network models.

5.4. Benchmarking with OLS sector models
Sector-specific neural networks underperform a bench-

mark in the form of sector-specific ordinary least squares
(OLS) models in the full sample. A long-short portfolio based
on the sorted predictions of OLS sector models generates a
higher value-weighted relative return than the sector neu-
ral networks. However, the OLS outperformance comes only
from the first half of the out-of-sample period. The trade-
off between stable model estimation and capturing sector-
specific complex interactions is particularly relevant for small
sector samples. Forecasts from the global neural network on
the pooled data across sectors remain more profitable than
the OLS models.

Sector models underperform the global model regarding
stock-level forecasting and long-short portfolio performance,
even when sector-specific breakpoints sort the global model
predictions. As a first step towards understanding the rea-
sons for this observation, I compare the sector-specific mod-
els with another machine learning technique. The sector
models used in this thesis build on a neural network archi-
tecture with three hidden layers (NN3). I compare these
with sector-specific models based on a simple linear predic-
tive regression model estimated by ordinary least squares.
The methodology remains the same; only the machine learn-
ing model for predicting returns from stock-specific signals
changes.

Table 5 compares the out-of-sample performance of long-
short portfolios based on the sorted predictions from the two
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Figure 3: Cumulative performance of top and bottom decile portfolios

The figure plots the cumulative log returns of top and bottom decile portfolios sorted on the out-of-sample neural network return forecasts. Each month,
stocks are sorted into value-weighted decile portfolios based on the predicted relative returns (with the market component removed) from the three neural
network strategies. The solid and dash lines represent long (top decile) and short (bottom decile) positions, respectively. For the short position, the monthly
relative returns of the bottom portfolio are multiplied by -1. The figure includes plots for the cumulative returns of the global model, the global model with
sector-neutral portfolio sorts, and the sector models. The sample consists of US CRSP stocks, excluding microcap stocks with a market capitalization smaller

than the 20th percentile of stocks listed on the NYSE. The sample runs from January 1994 to December 2022. The cumulative performance is cut off in
December 2008 and restarted in January 2009 to present differences in cumulative returns between the two sub-samples.
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Table 5: Performance of NN3 sector models versus OLS sector models

This table compares the out-of-sample performance of the value-weighted long-short portfolios formed from different machine learning sector model return
predictions. Results are reported for the NN3 sector models (same sector models as in Table 4 and Figure 3) and OLS sector models. All stocks are sorted
into decile portfolios based on their predicted relative returns (with the market component removed) for the next month. A long-short portfolio buys the
highest expected return stocks (decile 10) and sells the lowest (decile 1). Panel A compares the average value-weighted monthly full sample mean return
and average monthly sub-sample mean returns with associated t-statistics (t-stat). Panel B visualizes the cumulative log returns of top and bottom decile

portfolios sorted on the out-of-sample return forecasts of the two machine learning strategies. The solid and dash lines represent long (top decile) and short
(bottom decile) positions, respectively. The sample consists of US CRSP stocks, excluding microcap stocks with a market capitalization smaller than the 20th

percentile of stocks listed on the NYSE. The sample runs from January 1994 to December 2022.

Panel A: Percentage returns

Sector Models Mean
1994-2022

t-stat Mean
1994-2008

t-stat Mean
2009-2022

t-stat

NN3 0.99 6.14 0.70 3.06 1.29 5.80

OLS 1.43 7.80 1.78 6.41 1.05 4.53

Panel B: Cumulative performance of top and bottom decile portfolios

different machine learning methods. Panel A reports av-
erage monthly value-weighted out-of-sample returns with
associated t-statistics (t-stat). The sector neural networks
(NN3) returns are the same as in Panel A of Table 4. Panel
B visualizes the cumulative out-of-sample log returns of the
value-weighted long and short sides for the two machine
learning models.

The OLS sector models outperform the neural network
sector models over the whole out-of-sample period from Jan-
uary 1994 to December 2022. They achieve average monthly
long-short portfolio returns of 1.43% with an associated t-
statistic of 7.80. However, the results differ for the two dif-
ferent subsamples. The outperformance of the OLS models is

based solely on the first half of the out-of-sample period from
1994 to 2008. The OLS sector models generate significantly
higher long-short returns than the NN3 sector models during
this period. The monthly relative returns of 1.78% for the
OLS models are more than double the 0.70% achieved by the
sector models. The picture changes when looking at the later
subsample from 2009 to 2022. In this period, OLS models
underperform NN3 models, with average monthly returns of
1.05% and an associated t-statistic of 4.53. Panel B illustrates
these results. The cumulative log returns for the OLS long
and short portfolios remain positive throughout the out-of-
sample period. They perform more reliably in the early years,
with only a tiny long-short spread. As with all other machine
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learning models, the gains for the short portfolio are mainly
due to the dotcom bubble crash. The biggest difference be-
tween the OLS and NN3 sector models is the long portfolio
in the first half of the out-of-sample period. The cumulative
returns of the top decile stocks based on OLS forecasts are
about an order of magnitude higher than their NN3 coun-
terparts. In the second subsample from 2009 to 2022, the
returns of the OLS long and short portfolios follow a similar
pattern to the NN3 returns, with a slight underperformance.

These results demonstrate a trade-off between robust
model estimation and complex model architecture to cap-
ture sector-specific nonlinearities and variable interactions.
A simple linear regression model such as OLS requires only
a single parameter for each of the 212 signals. The pa-
rameters for the optimization problem are derived from a
closed-form solution. Therefore, OLS models benefit from
a higher ratio of observations to parameters and more sta-
ble model parameters. Their obvious disadvantage is the
inability to capture non-linearities and variable interactions.
The number of estimated coefficients in each of my neural
network models is 7,489. These numbers result in a low
observations-to-parameter ratio on small data sets, such as
the individual sector samples, especially at the beginning
of my sampling period when the training samples are the
smallest. In low signal-to-noise problems like stock return
prediction, complex machine learning models such as neural
networks tend to overfit noise rather than extract signals.
The NN3 sector models cannot exploit their advantage of
being able to capture complex sector-specific relationships
between signals and future returns. This can lead to the
poor predictive performance of neural networks for small
sectors and low portfolio returns in the first half of the out-
of-sample period. The pooling of data across sectors for the
global model improves the ratio of observations to param-
eters. This explains why it does not suffer from the same
problems as the sectoral models. The global neural network
is still able to capture nonlinearities and variable interactions
across sectors and thus significantly outperforms OLS mod-
els in the full sample, in line with previous research (e.g.,
Azevedo and Hoegner (2023), Blitz et al. (2023), and Gu
et al. (2020)).

Table A3 in the Appendix summarizes the out-of-sample
statistics of the value-weighted long-short portfolios formed
from different sector-specific OLS model return predictions.

5.5. Sector allocation as a return driver
The global neural network demonstrates some out-of-

sample sector allocation power. In the cross-section of sec-
tors, it correctly predicts higher relative returns for the most
profitable sectors and lower returns for the least profitable
sectors. This allows the global model to generate higher re-
turns in the long (top decile) portfolio when portfolio sorting
is not sector-neutral.

As seen in Table 4, sector-neutral portfolio sorts worsen
the profitability of long-short portfolios sorted on the out-of-
sample return forecasts of the global neural network. To bet-
ter understand this difference in performance, I briefly evalu-

ate the global neural network’s potential out-of-sample sector
allocation power. Table 6 summarizes my results. For each
of the ten GICS sectors, Panel A reports the average value-
weighted realized monthly relative return compared to the
average predicted return from the global model. In addition,
I report the average monthly allocation to the respective sec-
tor in the top decile portfolio sorted based on forecasts from
the global model. I focus on the long portfolio, the stronger
driver of the global model’s profitability than the short portfo-
lio. Panel B plots the cumulative value-weighted relative log
returns per sector over the out-of-sample period from Jan-
uary 1994 to December 2022.

Information Technology (tech) is the best-performing sec-
tor over the entire out-of-sample period, with a monthly rel-
ative return of 0.23%. Health Care (health) follows in sec-
ond place with a return of 0.09%, and Energy (energy) is in
third place with a return of 0.01%, thanks to solid gains af-
ter 2020. All other sectors generate negative value-weighted
relative returns out-of-sample.5 The worst-performing sec-
tors are Utilities (utilities), with an average monthly return of
-0.24%, and Communication Services (comm), with a return
of -0.35%. Apart from Information Technology, the global
model’s return predictions are not very close to the realized
returns, and they overstate expected returns. Still, it per-
forms relatively well in cross-sectionally classifying the sec-
tors into the correct extremes. The global model correctly
identifies the two best-performing sectors and predicts Util-
ities and Communication Services to be among the three
worst-performing sectors.

As a result, the global model shows some (limited) out-
of-sample sector allocation power. The long portfolio based
on global neural network forecasts has high average alloca-
tions to Information Technology (22.93%) and Health Care
(15.09%). It has an average allocation of less than 5% to
each of the three worst-performing sectors: Materials, Util-
ities, and Communication Services. The global model gen-
erates higher returns than sector-neutral portfolios by over-
weighting more profitable sectors and underweighting less
profitable sectors in the top decile portfolio.

6. Conclusion

I examine the difference in predictive power for the cross-
section of US stock returns between a global machine learn-
ing model and sector-specific models. Based on their strong
performance in previous research, I use neural networks as
the machine learning models. The global neural network is
trained on the full sample of stocks, while the sector neu-
ral networks are trained on ten different GICS sectors. The
global model consistently outperforms the sector models out-
of-sample in terms of predictive accuracy and profitability. It

5 Equally-weighted results (not reported) show that almost all sectors have
positive relative returns. On average, stocks with smaller market capital-
ization generate higher relative returns. This further demonstrates the
strong performance of the Size factor in the sample and justifies the high
variable importance of Size in the global neural network.
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Table 6: Sector allocation power of global neural network model

This table summarizes parts of the out-of-sample sector allocation power of the global neural network model. Panel A compares the average monthly
realized relative returns (with the market component removed) per sector to the average monthly predicted relative returns from the global model over the
out-of-sample period. The sectors in Panel A are ranked in descending order of realized returns. Panel A additionally reports the average monthly allocation

to each sector of the long (top decile) portfolio sorted based on the global model’s return predictions for the next month. Panel B plots the cumulative
relative log returns per sector over the out-of-sample period. All returns are value-weighted. The out-of-sample period runs from January 1994 to December
2022. The sample consists of US CRSP stocks, excluding microcap stocks with a market capitalization smaller than the 20th percentile of stocks listed on the

NYSE.

Panel A: Percentage returns and long portfolio allocation

Sector Realized returns Predicted returns Long portfolio allocation

Information Technology 0.23 0.26 22.93

Health Care 0.09 0.17 15.09

Energy 0.01 0.06 7.21

Consumer Discretionary -0.10 0.14 14.52

Consumer Staples -0.11 -0.03 3.74

Industrials -0.11 0.12 11.54

Financials -0.13 0.14 12.96

Materials -0.16 0.11 4.50

Utilities -0.24 -0.02 3.96

Communication Services -0.35 0.05 4.36

Panel B: Cumulative relative log returns per sector

derives most of its predictive power from Size as an input
signal. A long-short portfolio based on the sorted predic-
tions of the global model generates significant returns and
Sharpe ratios over the entire out-of-sample period. The sec-
tor models generate negative out-of-sample R2

OOS and their
long-short portfolio returns are lower, especially in the early
out-of-sample period. Complex models such as non-linear
neural networks struggle to exploit their advantages on small
sector-specific samples and underperform simple OLS mod-
els. The results for the global model support the recent liter-
ature on the strong predictive power of neural networks for
the cross-section of stock returns.
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